Math. Model. Nat. Phenom.
Volume 17, 2022
Nonlocal and delay equations
Article Number 16
Number of page(s) 21
Published online 17 June 2022
  1. D. Austin, M. Allen, J. McCollum, et al., Gene network shaping of inherent noise spectra. Nature. 439 (2006) 608–611. [CrossRef] [PubMed] [Google Scholar]
  2. M. Banerjee and V. Volpert, Stochastic intracellular regulation can remove oscillations in a model of tissue growth. Math. Med. Biol. 37 (2020) 551–568. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. A. Becskei and L. Serrano, Engineering stability in gene networks by autoregulation. Nature. 405 (2000) 590–593. [CrossRef] [PubMed] [Google Scholar]
  4. J. Bonnet, P. Yin, M.E. Ortiz, P. Subsoontorn and D. Endy, Amplifying genetic logic gates. Science 340 (2013) 599–603. [CrossRef] [PubMed] [Google Scholar]
  5. D. Bratsun, D. Volfson, J. Hasty and L. Tsimring, Non-Markovian processes in Gene Regulation. In Noise in Complex Systems and Stochastic Dynamics III edited by Laszlo B. Kish, Katja Lindenberg. Proc. SPIE 5845 (2005) 210–219. [CrossRef] [Google Scholar]
  6. D. Bratsun, D. Volfson, J. Hasty and L.S. Tsimring, Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 14593–14598. [CrossRef] [PubMed] [Google Scholar]
  7. D. Bratsun and A. Zakharov, Adaptive numerical simulations of reaction-diffusion systems with history and time-delayed feedback. In Vol. 8 of Emergence, Complexity and Computation edited by A. Sanayei, I. Zelinka, and O.E. Rossler. Springer, Heidelberg (2014) 191–201. [CrossRef] [Google Scholar]
  8. D. Bratsun and A. Zakharov, Deterministic modeling spatio-temporal dynamics of delay-induced circadian oscillations in Neurospora crassa. In Vol. 8 of Emergence, Complexity and Computation edited by A. Sanayei, I. Zelinka, and O.E. Rossler. Springer, Heidelberg (2014) 179–189. [CrossRef] [Google Scholar]
  9. D.A. Bratsun, D.V. Merkuriev, A.P. Zakharov and L.P. Pismen, Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue. J. Biol. Phys. 42 (2016) 107–132. [CrossRef] [PubMed] [Google Scholar]
  10. D.A. Bratsun, I.V. Krasnyakov and L.M. Pismen, Biomechanical modeling of invasive breast carcinoma under a dynamic change in cell phenotype: collective migration of large groups of cells. Biomech. Model. Mechanobiol. 19 (2020) 723–743. [CrossRef] [PubMed] [Google Scholar]
  11. K. Burrage, P.M. Burrage, A. Leier, T. Marquez-Lago and D.V. Nicolau, Stochastic simulation for spatial modelling of dynamic processes in a living cell. In Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology edited by H. Koeppl et al.. Springer, Heidelberg (2011) 43–62. [Google Scholar]
  12. X. Cai, Exact stochastic simulation of coupled chemical reactions with delays. J. Chem. Phys. 126 (2007) 124108. [CrossRef] [PubMed] [Google Scholar]
  13. R. Daniel, J.R. Rubens, R. Sarpeshkar and T.K. Lu, Synthetic analog computation in living cells. Nature 497 (2013) 619–623. [CrossRef] [PubMed] [Google Scholar]
  14. T. Danino, O. Mondragön-Palomino, L. Tsimring and J. Hasty, A synchronized quorum of genetic clocks. Nature 423 (2010) 326–330. [CrossRef] [PubMed] [Google Scholar]
  15. D. Denault, J. Loros and J. Dunlap, WC-2 mediates WC-1—FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 20 (2001) 109–117. [CrossRef] [Google Scholar]
  16. M.B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403 (2000) 335–338. [CrossRef] [PubMed] [Google Scholar]
  17. R. Farhadifar, J.C. Roper, B. Aigouy, S. Eaton and F. Jülicher, The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17 (2007) 2095–2104. [CrossRef] [Google Scholar]
  18. A.E. Friedland, T.K. Lu, X. Wang, D. Shi, G. Church and J.J. Collins, Synthetic gene networks that count. Science 324 (2009) 1199–1202. [CrossRef] [PubMed] [Google Scholar]
  19. E. Fung, W.W. Wong, J.K. Suen, T. Bulter, S. Lee and J.C. Liao, A synthetic gene-metabolic oscillator. Nature 435 (2005) 118–122. [CrossRef] [PubMed] [Google Scholar]
  20. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81 (1977) 2340–2361. [CrossRef] [Google Scholar]
  21. D. Gonze, S. Bernard, C. Waltermann, A. Kramer and H. Herzel, Spontaneous synchronization of coupled circadian oscillators. Biophys. J. 89 (2005) 120–129. [CrossRef] [Google Scholar]
  22. D. Gonze and P. Ruoff, The Goodwin Oscillator and its Legacy. Acta Biotheor. 69 (2021) 857–874. [CrossRef] [PubMed] [Google Scholar]
  23. B.C. Goodwin, Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3 (1965) 425–438. [CrossRef] [Google Scholar]
  24. J.S. Griffith, Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol. 20 (1968) 202–208. [CrossRef] [Google Scholar]
  25. D.J. Higham, Modeling and simulating chemical reactions. SIAM Rev. 50 (2008) 347–368. [CrossRef] [MathSciNet] [Google Scholar]
  26. H. Honda, T. Nagai and M. Tanemura, Two different mechanisms of planar cell intercalation leading to tissue elongation. Dev. Dyn. 237 (2008) 1826–1836. [CrossRef] [Google Scholar]
  27. T. Jia and R.V. Kulkarni, Intrinsic noise in stochastic models of gene expression with molecular memory and bursting. Phys. Rev. Lett. 106 (2011) 058102. [CrossRef] [PubMed] [Google Scholar]
  28. M. Kaern, T.C. Elston, W.J. Blake and J.J. Collins, Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6 (2005) 451–464. [CrossRef] [PubMed] [Google Scholar]
  29. C.L. Kelly, A.W. K. Harris, H. Steel, E.J. Hancock, J.T. Heap and A. Papachristodoulou, Synthetic negative feedback circuits using engineered small RNAs. Nucl. Acids Res. 46 (2018) 9875–9889. [CrossRef] [PubMed] [Google Scholar]
  30. T.B. Kepler and T.C. Elston, Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81 (2001) 3116–3136. [CrossRef] [Google Scholar]
  31. I.V. Krasnyakov, D.A. Bratsun and L.M. Pismen, Mathematical modelling of epithelial tissue growth. Russ. J. Biomech. 24 (2020) 375–388. [Google Scholar]
  32. A. Koseska, E. Ullner, E. Volkov, J. Kurths and J. Garcia-Ojalvo, Cooperative differentiation through clustering in multicellular populations. J. Theor. Biol. 263 (2010) 189–202. [CrossRef] [Google Scholar]
  33. K. Lee, J.J. Loros and J.C. Dunlap, Interconnected feedback loops in the Neurospora circadian system. Science 289 (2000) 107–110. [CrossRef] [PubMed] [Google Scholar]
  34. C. Lemerle, B. Di Ventura and L. Serrano, Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579 (2005) 1789–1794. [CrossRef] [Google Scholar]
  35. C.-W. Li and B.-S. Chen, Stochastic spatio-temporal dynamic model for gene/protein interac-tion network in early drosophila development. Gene Regul. Syst. Biol. 3 (2009) 191–210. [Google Scholar]
  36. T.T. Marquez-Lago, A. Leier and K. Burrage, Probability distributed time delays: integrating spatial effects into temporal models. BMC Syst. Biol. 4 (2010) 19. [CrossRef] [Google Scholar]
  37. N. Masuda and L.E.C. Rocha, A gillespie algorithm for non-Markovian stochastic processes. SIAM Rev. 60 (2018) 95–115. [CrossRef] [MathSciNet] [Google Scholar]
  38. D.V. Nicolau and K. Burrage, Stochastic simulation of chemical reactions in spatially complex media. Comput. Math. Appl. 55 (2008) 1007–1018. [CrossRef] [MathSciNet] [Google Scholar]
  39. L. Pagani, E.A. Semenova, E. Moriggi, V.L. Revell, L.M. Hack et al., The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts. PLoS ONE 5 (2010) e13376. [CrossRef] [PubMed] [Google Scholar]
  40. J. Pahle, Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief Bioinform. 10 (2009) 53–64. [Google Scholar]
  41. J.M. Pedraza and J. Paulsson, Effects of molecular memory and bursting on fluctuations in gene expression. Science 319 (2008) 339–343. [CrossRef] [PubMed] [Google Scholar]
  42. L. Potvin-Trottier, N.D. Lord, G. Vinnicombe and J. Paulsson, Synchronous long-term oscillations in a synthetic gene circuit. Nature 538 (2016) 514–517. [CrossRef] [PubMed] [Google Scholar]
  43. D.C. Prasher, V.K. Eckenrode, W.W. Ward, F.G. Prendergast and M.J. Cormier, Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111 (1992) 229–33. [CrossRef] [PubMed] [Google Scholar]
  44. N. Rosenfeld, J.W. Young, U. Alon, P.S. Swain and M.B. Elowitz, Gene regulation at the single-cell level. Science. 307 (2005) 1962–1965. [CrossRef] [PubMed] [Google Scholar]
  45. M. Salm and L.M. Pismen, Chemical and mechanical signaling in epithelial spreading. Phys. Biol. 9 (2012) 026009. [CrossRef] [PubMed] [Google Scholar]
  46. K. Sriram and M.S. Gopinathan, A two variable delay model for the circadian rhythm of Neurospora crassa. J. Theor. Biol. 231 (2004) 23–38. [CrossRef] [Google Scholar]
  47. A. Stephanou and V. Volpert, Hybrid Modelling in Cell Biology. Math. Model. Nat. Phenom. 10 (2015) 1–3. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  48. T. Szekely and K. Burrage, Stochastic simulation in systems biology. Comput. Struct. Biotechnol. J. 12 (2014) 14–25. [CrossRef] [Google Scholar]
  49. M. Tigges, T.T. Marquez-Lago, J. Stelling and M.A. Fussenegger, A tunable synthetic mammalian oscillator. Nature 457 (2009) 309–312. [CrossRef] [PubMed] [Google Scholar]
  50. T.M. Touaoula, M.N. Frioui, N. Bessonov and V. Volpert, Dynamics of solutions of a reaction-diffusion equation with delayed inhibition. Discr. Continu. Dyn. Syst. 13 (2020) 2425–2442. [Google Scholar]
  51. L.S. Tsimring, Noise in biology. Rep. Prog. Phys. 77 (2014) 026601. [CrossRef] [PubMed] [Google Scholar]
  52. E. Ullner, A. Zaikin, E.I. Volkov and J. Garcia-Ojalvo, Multistability and clustering in a popula-tion of synthetic genetic oscillators via phase-repulsive cell-to-cell communication. Phys. Rev. Lett. 99 (2007) 148103. [CrossRef] [PubMed] [Google Scholar]
  53. C.L. Vestergaard and M. Genois, Temporal Gillespie algorithm: Fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11 (2015) e1004579. [CrossRef] [Google Scholar]
  54. S.H. Yoo, S. Yamazaki, P.L. Lowrey, K. Shimomura, C.H. Ko, E.D. Buhr, et. al., PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 5339–5346. [CrossRef] [PubMed] [Google Scholar]
  55. J. Zhang and T. Zhou, Markovian approaches to modeling intracellular reaction processes with molecular memory. Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 23542–23550. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.