Open Access
Issue
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 15
Number of page(s) 22
Section Mathematical physiology and medicine
DOI https://doi.org/10.1051/mmnp/2023011
Published online 16 June 2023
  1. A. Anderson, M.A.J. Chaplain and K. Rejniak, Single-cell-based models in biology and medicine. Springer Science & Business Media (2007). [CrossRef] [Google Scholar]
  2. E.C. Anderson, C. Hessman, T.G. Levin, M.M. Monroe and M.H. Wong The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers 3 (2011) 319–339. [CrossRef] [PubMed] [Google Scholar]
  3. E. Beretta, V. Capasso and N. Morozova Mathematical modelling of cancer stem cells population behavior. Math. Modell. Natur. Phenomena 7 (2012) 279–305. [Google Scholar]
  4. E. Beretta, N. Morozova, V. Capasso and A. Harel-Bellan, Some results on the population behavior of cancer stem cells. In New Challenges for Cancer Systems Biomedicine. Springer (2012), pp. 145–172. [CrossRef] [Google Scholar]
  5. R. Betteridge, M.R. Owen, H.M. Byrne, T. Alarcón and P.K. Maini The impact of cell crowding and active cell movement on vascular tumour growth. Netw. Heterogene. Media 1 (2006) 515. [CrossRef] [Google Scholar]
  6. A. Boondirek, W. Triampo and N. Nuttavut, A review of cellular automata models of tumor growth. In Int. Math. Forum 5 (2010) 3023–3029. [MathSciNet] [Google Scholar]
  7. I. Borsi, A. Fasano, M. Primicerio and T. Hillen Mathematical properties of a non-local integro-PDE model for cancer stem cells. Math. Med. Biol. 34 (2015) 59–75. [Google Scholar]
  8. R.W. Cho and M.F. Clarke Recent advances in cancer stem cells. Curr. Opin. Genetics Dev. 18 (2008) 48–53. [CrossRef] [Google Scholar]
  9. M.F. Clarke and M. Fuller Stem cells and cancer: two faces of eve. Cell 124 (2006) 1111–1115. [CrossRef] [PubMed] [Google Scholar]
  10. H. Clevers The cancer stem cell: premises, promises and challenges. Nat. Med. 17 (2011) 313–319. [CrossRef] [PubMed] [Google Scholar]
  11. G. De Vries, T. Hillen, M. Lewis, J. Müller and B. Schönfisch, A course in mathematical biology: quantitative modeling with mathematical and computational methods. SIAM (2006). [Google Scholar]
  12. H. Enderling, A.R. Anderson, M.A. Chaplain, A. Beheshti, L. Hlatky and P. Hahnfeldt Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69 (2009) 8814–8821. [CrossRef] [PubMed] [Google Scholar]
  13. H. Enderling and P. Hahnfeldt, Cancer stem cells in solid tumors: Is ‘evading apoptosis a hallmark of cancer Progr. Biophys. Molec. Biol. 106 (2011) 391–399. [CrossRef] [Google Scholar]
  14. A. Fasano, A. Mancini and M. Primicerio Tumours with cancer stem cells: a PDE model. Math. Biosci. 272 (2016) 76–80. [Google Scholar]
  15. F. Forouzannia, H. Enderling and M. Kohandel Mathematical modeling of the effects of tumor heterogeneity on the efficiency of radiation treatment schedule. Bull. Math. Biol. 80 (2018) 283–293. [CrossRef] [PubMed] [Google Scholar]
  16. R. Ganguly and I. Puri Mathematical model for the cancer stem cell hypothesis. Cell Proliferat. 39 (2006) 3–14. [CrossRef] [PubMed] [Google Scholar]
  17. X. Gao, J.T. McDonald, L. Hlatky and H. Enderling, Cell-cell interactions in solid tumors - the role of cancer stem cells. In New Challenges for Cancer Systems Biomedicine (Springer, 2012), pp. 191–204 [CrossRef] [Google Scholar]
  18. K.V. Gurova and A.V. Gudkov Paradoxical role of apoptosis in tumor progression. J. Cell. Biochem. 88 (2003) 128–137. [CrossRef] [PubMed] [Google Scholar]
  19. M. Hadjicharalambous, P.A. Wijeratne and V. Vavourakis From tumour perfusion to drug delivery and clinical translation of in silico cancer models. Methods 185 (2021) 82–93. [CrossRef] [PubMed] [Google Scholar]
  20. T. Hillen, H. Enderling and P. Hahnfeldt The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75 (2013) 161–184. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. B.J. Huntly and D.G. Gilliland Summing up cancer stem cells. Nature 435 (2005) 1169–1170. [CrossRef] [PubMed] [Google Scholar]
  22. M. Marzagalli, F. Fontana, M. Raimondi and P. Limonta Cancer stem cells - key players in tumor relapse. Cancers 13 (2021) 376. [CrossRef] [PubMed] [Google Scholar]
  23. L. Meacci, D. de Oliveira Medeiros, G. Buscaglia and M. Primicerio. O paradoxo do crescimento tumoral atraves de um modelo 3d de automatos celulares com celulas- tronco cancerígenas. CQD-Revista Eletronica Paulista de Matematica 14 (2019) 132–146. [CrossRef] [Google Scholar]
  24. L. Meacci and M. Primicerio Mathematical models for tumours with cancer stem cells. Comput. Appl. Math. 37 (2018) 6544–6559. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Meacci, M. Primicerio and G.C. Buscaglia Growth of tumours with stem cells: The effect of crowding and ageing of cells. Physica A 570 (2021) 125841. [CrossRef] [Google Scholar]
  26. J. Metzcar, Y. Wang, R. Heiland and P. Macklin, A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inf. 2 (2019) 1–13. [Google Scholar]
  27. F. Michor, et al., Mathematical models of cancer stem cells. J. Clin. Oncol. 26 (2008) 2854–2861. [CrossRef] [PubMed] [Google Scholar]
  28. R. Molina-Peña and M.M. Álvarez, A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. PloS One 7 (2012) e26233. [CrossRef] [PubMed] [Google Scholar]
  29. R. Molina-Peña, J.C. Tudon-Martinez and O. Aquines-Gutiérrez, A mathematical model of average dynamics in a stem cell hierarchy suggests the combinatorial targeting of cancer stem cells and progenitor cells as a potential strategy against tumor growth. Cancers 12 (2020) 2590. [CrossRef] [PubMed] [Google Scholar]
  30. Á. Monteagudo and J. Santos Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context. Biosystems 115 (2014) 46–58. [CrossRef] [PubMed] [Google Scholar]
  31. Á. Monteagudo and J. Santos Treatment analysis in a cancer stem cell context using a tumor growth model based on cellular automata. PloS ONE 10 (2015) e0132306. [CrossRef] [PubMed] [Google Scholar]
  32. T. Nunes, D. Hamdan, C. Leboeuf, M. El Bouchtaoui, G. Gapihan, T.T. Nguyen, S. Meles, E. Angeli, P. Ratajczak, H. Lu et al., Targeting cancer stem cells to overcome chemoresistance. Int. J. Molec. Sci. 19 (2018) 4036. [CrossRef] [Google Scholar]
  33. J. Poleszczuk and H. Enderling, A high-performance cellular automaton model of tumor growth with dynamically growing domains. Appl. Math. 5 (2014) 144. [CrossRef] [Google Scholar]
  34. M. Prieto-Vila, R.-U. Takahashi, W. Usuba, I. Kohama and T. Ochiya Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci. 18 (2017) 2574. [CrossRef] [Google Scholar]
  35. T. Reya, S.J. Morrison, M.F. Clarke and I.L. Weissman Stem cells, cancer, and cancer stem cells. Nature 414 (2001) 105–111. [CrossRef] [PubMed] [Google Scholar]
  36. A. Rivaz, M. Azizian and M. Soltani Various mathematical models of tumor growth with reference to cancer stem cells: a review. Iran. J. Sci. Technol. Trans. A 43 (2019) 687–700. [CrossRef] [MathSciNet] [Google Scholar]
  37. M.W. Schmitt, M.J. Prindle and L.A. Loeb Implications of genetic heterogeneity in cancer. Ann. New York Acad. Sci. 1267 (2012) 110. [CrossRef] [Google Scholar]
  38. A. Shyntar, A. Patel, M. Rhodes, H. Enderling and T. Hillen The tumor invasion paradox in cancer stem cell-driven solid tumors. Bull. Mathemat. Biol. 84 (2022) 1–24. [CrossRef] [Google Scholar]
  39. H.R. Thieme, Vol. 12 of Mathematics in population biology. Princeton University Press (2018). [Google Scholar]
  40. C. Tomasetti, L. Li and B. Vogelstein Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355 (2017) 1330–1334. [CrossRef] [PubMed] [Google Scholar]
  41. C. Tomasetti, B. Vogelstein and G. Parmigiani Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. 110 (2013) 1999–2004. [CrossRef] [PubMed] [Google Scholar]
  42. J.E. Visvader and G.J. Lindeman Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8 (2008) 755–768. [CrossRef] [PubMed] [Google Scholar]
  43. S.L. Weekes, B. Barker, S. Bober, K. Cisneros, J. Cline, A. Thompson, L. Hlatky, P. Hahnfeldt and H. Enderling, A multicompartment mathematical model of cancer stem cell-driven tumor growth dynamics. Bull. Math. Biol. 76 (2014) 1762–1782. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  44. L.D. Weiss, N.L. Komarova and I.A. Rodriguez-Brenes Mathematical modeling of normal and cancer stem cells. Curr. Stem Cell Rep. 3 (2017) 232–239. [CrossRef] [Google Scholar]
  45. L.D. Weiss, P. van den Driessche, J.S. Lowengrub, D. Wodarz and N.L. Komarova, Effect of feedback regulation on stem cell fractions in tissues and tumors: understanding chemoresistance in cancer. J. Theor. Biol. 509 (2021) 110499. [CrossRef] [Google Scholar]
  46. D. Wodarz and N. Komarova, Can loss of apoptosis protect against cancer? Trends Genet. 23 (2007) 232–237. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.