Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 34
Number of page(s) 27
Section Population dynamics and epidemiology
Published online 22 December 2023
  1. T. Alcoverro, E. Conte and L. Mazzella, Production of mucilage by the Adriatic epipelic diatom cylindrotheca closterium (bacillariophyceae) under nutrient limitation. J. Phycol. 36 (2000) 1087–1095. [CrossRef] [Google Scholar]
  2. S. Calvo, R. Barone and L. Flores, Observations on mucus aggregates along Sicilian coasts during 1991–1992. Sci. Total Environ. 165 (1995) 23–31. [CrossRef] [Google Scholar]
  3. D. Degobbis, R. Precali, C.R. Ferrari, T. Djakovac Attilio Rinaldi, I. Ivancic, M. Gismondi and N. Smodlaka, Changes in nutrient concentrations and ratios during mucilage events in the period 1999–2002. Sci. Total Environ. 353 (2005) 103–114. [CrossRef] [Google Scholar]
  4. P. Del Negro, E. Crevatin, C. Larato, C. Ferrari, C. Totti, M. Pompei, M. Giani, D. Berto and S. Fonda Umani, Mucilage microcosms. Sci. Total Environ. 353 (2005) 258–269. [CrossRef] [Google Scholar]
  5. M. Mecozzi, E. Pietrantonio, V. Di Noto and Z. Papai, The humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation. Mar. Chem. 95 (2005) 255–269. [CrossRef] [Google Scholar]
  6. Y. Aktan, A. Dede and P.S. Ciftci, Mucilage event associated with diatoms and dinoflagellates in Sea of Marmara, Turkey. Harmful Algae News IOC-UNESCO, (2008) 1–3. [Google Scholar]
  7. N. Balkis-ozdelice, T. Durmuand M. Balci, A preliminary study on the intense pelagic and benthic mucilage phenomenon observed in the sea of Marmara. Int. J. Environ. Geoinformatics 8 (2021) 414–422. [CrossRef] [Google Scholar]
  8. I. Auby and N. Neaud-Masson, Identification des composants d’une substance dénommée localement ”liga” se déposant sur certains engins de pêche au large de Saint Jean de Luz. Report of Institut francais de recherche pour l’exploitation de la mer (ifremer), 2001. [Google Scholar]
  9. N. Susperregui, ”Liga”, mucilages marins sur la côte basque Dossier de presse Comité Interdépartemental des Pêches Maritimes et des Elevages Marins des Pyrénées Atlantiques – Landes (2019). [Google Scholar]
  10. X. Mari, U. Passow, C. Migon, A. B. Burd and L. Legendre, Transparent exopolymer particles : Effects on carbon cycling in the ocean Progr. Oceanogr. 151 (2017) 13–37. [CrossRef] [Google Scholar]
  11. A. Bussard, Capacités d’acclimatation des diatomées aux contraintes environnementales. PhD thesis, Muséum national d’histoire naturelle – Sciences de la Nature et de l’Homme (2015). [Google Scholar]
  12. C.S. Reynolds, Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578 (2007) 37–45. [CrossRef] [Google Scholar]
  13. S. Scala and C. Bowler, Molecular insights into the novel aspects of diatom biology. Cell. Mol. Life Sci. 58 (2001) 1666–1673. [CrossRef] [PubMed] [Google Scholar]
  14. J. Seckbach and J.P. Kociolek, The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 19 (2011). [CrossRef] [Google Scholar]
  15. V. Smetacek, Diatoms and the ocean carbon cycle. Protist 150 (1999) 25–32. [CrossRef] [PubMed] [Google Scholar]
  16. O. Sayanova, V. Mimouni, L. Ulmann, A. Morant-Manceau, V. Pasquet, B. Schoefs and J.A. Napier, Modulation of lipid biosynthesis by stress in diatoms. Phil. Trans. R. Soc. B 372 (2017) 20160407. [CrossRef] [PubMed] [Google Scholar]
  17. J.L. Genzer, M. Kamalanathan, L. Bretherton, J. Hillhouse, C. Xu, P.H. Santschi and A. Quigg, Diatom aggregation when exposed to crude oil and chemical dispersant: potential impacts of ocean acidification PLoS ONE 15 (2020) e0235473. [CrossRef] [PubMed] [Google Scholar]
  18. U. Passow, Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol. Prog. Ser. 192 (2000) 1–11. [CrossRef] [Google Scholar]
  19. A.B. Burd, J.P. Chanton, K.L. Daly, S. Gilbert, U. Passow and A. Quigg, The science behind marine-oil snow and MOSSFA: Past, present, and future. Progr. Oceanogr. 187 (2020) 102398. [CrossRef] [Google Scholar]
  20. A. Bartual, I.V. Cera, S. Flecha and L. Prieto, Effect of dissolved polyunsaturated aldehydes on the size distribution of transparent exopolymeric particles in an experimental diatom bloom. Mar. Biol. 164 (2017) 120. [CrossRef] [Google Scholar]
  21. N. Susperregui, personal communication. [Google Scholar]
  22. A.E. Allen, C.L. Dupont, M. Oborník, A. Horák, A. Nunes-Nesi, J.P. McCrow, H. Zheng, D.A. Johnson, H. Hu, A.R. Fernie and C. Bowler, Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473 (2011) 203–207. [CrossRef] [PubMed] [Google Scholar]
  23. O. Levitan, J. Dinamarca, E. Zelzion, D.S. Lun, L.T. Guerra, M. Kyung Kim, J. Kim, B.A.S. Van Mooy, D. Bhattacharya and P.G. Falkowski, Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. PNAS 112 (2015) 412–417. [CrossRef] [PubMed] [Google Scholar]
  24. S.R. Smith, C.L. Dupont, J.K. McCarthy, J.T. Broddrick, M. Oborník, A. Horák, Z. Füssy, J. Cihlář, S. Kleessen, H. Zheng, J.P. McCrow, K.K. Hixson, W.L. Araújo, A. Nunes-Nesi, A. Fernie, Z. Nikoloski, B.O. Palsson and A.E. Allen, Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 10 (2019) 4552. [CrossRef] [Google Scholar]
  25. M. Schapira, Dynamique spatio-temporelle de Phaeocystis globosa en Manche orientale: effets de la turbulence et des apports sporadiques en sels nutritifs. PhD thesis, UMR 8013 ELICO: Ecosystèmes Littoraux et Côtiers, Université de Lille 1 (2005). [Google Scholar]
  26. E. Litchman, C. Klausmeier, O. Schofield and P. Falkowski, The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett. 10 (2007) 1170–1181. [CrossRef] [PubMed] [Google Scholar]
  27. M. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK 48 (1968) 689–733. [CrossRef] [Google Scholar]
  28. D.H. Turpin, Physiological mechanisms in phytoplankton resource competition, in Growth and Reproductive Strategies of Freshwater Phytoplankton, edited by C.D. Sandgren. Cambridge University Press (1988) 318–368. [Google Scholar]
  29. M.A. Brzezinski, The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables J. Phycol. 21 (1985) 347–357. [CrossRef] [Google Scholar]
  30. C.A. Klausmeier, E. Litchman, T. Daufresne and S.A. Levin, Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429 (2004) 171–174. [CrossRef] [PubMed] [Google Scholar]
  31. A.C. Martiny, J.A. Vrugt and M.W. Lomas, Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Scientific Data 1 (2014) 140048. [CrossRef] [PubMed] [Google Scholar]
  32. S.A. Sañudo-Wilhelmy, A. Tovar-Sanchez, F.X. Fu, D.G. Capone, E.J. Carpenter and D.A. Hutchins, The impact of surface- adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature 432 (2004) 897–901. [CrossRef] [PubMed] [Google Scholar]
  33. J. Elser, R. Sterner, E. Gorokhova, W. Fagan, T. Markow, J. Cotner, J. Harrison, S. Hobbie, G. Odell and L. Weider, Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3 (2000) 540–550. [CrossRef] [Google Scholar]
  34. E. Buzzelli, R. Gianna, E. Marchiori and M. Bruno, Influence of nutrient factors on production of mucilage by Amphora coffeaeformis var. perpusilla. Continental Shelf Res. 17 (1997) 1171–1180. [CrossRef] [Google Scholar]
  35. L. MacKenzie, I. Sims, V. Beuzenberg and P. Gillespie, Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasman Bay, New Zealand Harmful Algae 1 (2002) 69–83. [CrossRef] [Google Scholar]
  36. D.C.O. Thornton, Coomassie stainable particles (CSP): protein containing exopolymer particles in the ocean. Front. Mar. Sci. 5 (2018) 206. [CrossRef] [Google Scholar]
  37. P. Cermeño, The geological story of marine diatoms and the last generation of fossil fuels. Perspect. Phycol. 3 (2016) 53–60. [Google Scholar]
  38. P. Zahajská, S. Opfergelt, S.C. Fritz, J. Stadmark and D.J. Conley, What is diatomite? Q. Res. 96 (2020) 48–52. [CrossRef] [Google Scholar]
  39. D.M. Harwood, V.A. Nikolaev and D.M. Winter, Cretaceous records of diatom evolution, radiation, and expansion. Paleontol. Soc. Pap. 13 (2007) 33–59. [CrossRef] [Google Scholar]
  40. V. Girard, S. Saint Martin, J.-P. Saint Martin, A.R. Schmidt, S. Struwe, V. Perrichot, G. Breton and D. Néraudeau, Exceptional preservation of marine diatoms in upper Albian amber. Geology 37 (2009) 83–86. [CrossRef] [Google Scholar]
  41. J.M. Nakov, T.M. Beaulieu and A.J. Alverson, Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (diatoms, bacillariophyta). New Phytologist 219 (2018) 462–473. [CrossRef] [PubMed] [Google Scholar]
  42. A. Barral, B. Gomez, F. Fourel, V. Daviero-Gomez and C. Lécuyer, CO2 and temperature decoupling at the million-year scale during the cretaceous greenhouse. Sci. Rep. 7 (2017) 8310. [CrossRef] [Google Scholar]
  43. J. Renaudie, Quantifying the cenozoic marine diatom deposition history: links to the C and Si cycles. Biogeosciences 13 (2016) 6003–6014. [CrossRef] [Google Scholar]
  44. D.J. Beerling and D.L. Royer, Convergent cenozoic co2 history. Nat. Geosci. 4 (2011) 418–420. [CrossRef] [Google Scholar]
  45. U. Riebesell, K.G. Schulz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhöfer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers and E. Zöllner, Enhanced biological carbon consumption in a high co2 ocean. Nature 450 (2007) 545–548. [CrossRef] [PubMed] [Google Scholar]
  46. J. Barcelos e Ramos, K.G. Schulz, C. Brownlee, S. Sett and E. B. Azevedo, Effects of increasing seawater carbon dioxide concentrations on chain formation of the diatom Asterionellopsis glacialis. PLoS ONE 9 (2014) e90749. [CrossRef] [PubMed] [Google Scholar]
  47. T. Brembu, A. Muhlroth, L. Alipanah and A.M. Bones, The effects of phosphorus limitation on carbon metabolism in diatoms. Phil. Trans. R. Soc. B 372 (2017) 20160406. [CrossRef] [PubMed] [Google Scholar]
  48. R. Danovaro, S. Fonda Umani and A. Pusceddu, Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean sea. PLoS ONE 4 (2009) e7006. [CrossRef] [PubMed] [Google Scholar]
  49. C. Heemann, Phytoplanktonexsudation in Abhängigkeit von der Meerwasserkarbonatchemie. Thesis, Univ. Bremen (2002). [Google Scholar]
  50. M. Hein and K. Sand-Jensen, CO2 increases oceanic primary production. Nature 388 (1997) 526–527. [CrossRef] [Google Scholar]
  51. D.O. Hessen and T.R. Anderson, Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications. Limnol. Oceanogr. 53 (2008) 1685–1696. [CrossRef] [Google Scholar]
  52. A. Torstensson, M. Hedblom, M. Mattsdotter Björk, M. Chierici and A. Wulff. Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the antarctic diatom Nitzschia lecointei. Proc. Roy. Soc. B: Biol. Sci. 282 (2015) 20151513. [Google Scholar]
  53. Z. Wei, T. Xuexi, Y. Yingying, Z. Xin Zhang and Z. Xinxin, Elevated pCO2 level affects the extracellular polymer metabolism of Phaeodactylum tricornutum. Front. Microbiol. 11 (2020) 339. [CrossRef] [Google Scholar]
  54. M. Cadier, Diversité des communautés phytoplanctoniques en relation avec les facteurs environnementaux en mer d’Iroise: approche par la modélisation 3D. PhD thesis, LEMAR – Laboratoire des Sciences de l’Environnement Marin (2016) [Google Scholar]
  55. S. Dutkiewicz, M.J. Follows and J.G. Bragg, Modeling the coupling of ocean ecology and biogeochemistry. Global Biogeochem. Cycles 23 (2009) GB4017. [CrossRef] [Google Scholar]
  56. M.J. Follows, S. Dutkiewicz, S. Grant and S.W. Chisholm, Emergent biogeography of microbial communities in a model ocean. Science 315 (2007) 1843–1846. [CrossRef] [PubMed] [Google Scholar]
  57. K.J. Flynn and A. Mitra, Why plankton modelers should reconsider using rectangular hyperbolic (Michaelis–Menten, monod) descriptions of predator–prey interactions. Front. Mar. Sci. 3 (2016) 165. [CrossRef] [Google Scholar]
  58. F. Murat and C. Trombetti, A chain rule formula for the composition of a vector-valued function by a piecewise smooth function. Bol. Unione Mat. Ital. 8 (2003) 581–595. [Google Scholar]
  59. T. Legovic and A. Cruzado, A model of phytoplankton growth on multiple nutrients based on the Michaelis–Menten–Monod uptake, Droop’s growth and Liebig’s law. Ecol. Model. 99 (1997) 19–31. [CrossRef] [Google Scholar]
  60. K.J. Flynn, Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Progr. Oceanogr. 56 (2003) 249–279. [CrossRef] [Google Scholar]
  61. J.R. Lobry, Re-Evalution du modèle de croissance de Monod. Effet des antibiotiques sur l’énergie de maintenance. Thède de l’Université Claude Bernard, Lyon I (1991). [Google Scholar]
  62. D. Sardari, Mathematical basis for diatom growth modelling, in The Mathematical Biology of Diatoms, edited by J.L. Pappas, Diatoms: Biology and Applications. Wiley (2023) Chap. 5. [Google Scholar]
  63. J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganim Cultures. Chemostat and Bioprocesses SET, Vol. 1. Wiley (2017). [Google Scholar]
  64. S.E. Jørgensen and G. Bendoricchio, Fundamentals of Ecological Modelling. Developments in Environmental Modelling, Vol. 21. Elsevier (2001). [Google Scholar]
  65. F.-B. Wang and S.-B. Hsu, A Survey of Mathematical Models with Variable Quotas. Taiwanese J. Math. 23 (2019) 269–291. [MathSciNet] [Google Scholar]
  66. H. Wang, P.V. Garcia, S. Ahmed and C.M. Heggerud, Mathematical comparison and empirical review of the Monod and Droop forms for resource-based population dynamics. Ecol. Model. 466 (2022) 109887. [CrossRef] [Google Scholar]
  67. C.A. Klausmeier, E. Litchman and S.A. Levin, Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol. Oceanogr. 49 (2004) 463–1470. [Google Scholar]
  68. A. Peace, H. Wang and Y. Kuang, Dynamics of a Producer-–Grazer Model Incorporating the Effects of Excess Food Nutrient Content on Grazer’s Growth Bull. Math. Biol. 76 (2014) 2175–2197. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  69. M.E. Baird and S.M. Emsley, Towards a mechanistic model of plankton population dynamics. J. Plankton Res. 21 (1999) 85–126. [CrossRef] [Google Scholar]
  70. A. Dauta, Conditions de développement du phytoplancton. Étude comparative du comportement de huit espèces en culture. II. Rôle des nutriments: assimilation et stockage intracellulaire Annls Limnol. 18 (1982) 263–292. [CrossRef] [EDP Sciences] [Google Scholar]
  71. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. revised ed. Chapman and Hall/CRC (2015). [Google Scholar]
  72. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies. 5. Notas de matematica (50). North-Holland Publishing Comp., Amsterdam-London; American Elsevier Publishing Comp., Inc., New York (1973) 183. [Google Scholar]
  73. J. Cortes, Discontinuous dynamical systems. IEEE Control Syst. Mag. 28 (2008) 36–73. [MathSciNet] [Google Scholar]
  74. J.L. Serra, M.J. Llama and E. Cadenas, Nitrate utilization by the diatom Skeletonema costatum. II. Regulation of nitrate uptake. Plant Physiol. 62 (1978) 991–994. [CrossRef] [PubMed] [Google Scholar]
  75. S.E. Jørgensen, M. Friis and J. Henriksen, Handbook of Environmental Data and Ecological Parameters (1979). [Google Scholar]
  76. S. Burkhardt, G. Amoroso, U. Riebesell and D. Sültemeyer, CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46 (2001) 1378–1391. [CrossRef] [Google Scholar]
  77. A.M. Johnston and J.A. Raven, Inorganic carbon accumulation by the marine diatom phaeodactylum tricornutum. Eur. J. Phycol. 31 (1996) 285–290. [CrossRef] [Google Scholar]
  78. J. Chen and D. Thornton, The effect of temperature and growth rate on TEP production by Thalassiosira weissflogii. J. Phycol. 47 (2011) S64–S64. [Google Scholar]
  79. T. Fukao, K. Kimoto, and Y. Kotani, Effect of temperature on cell growth and production of transparent exopolymer particles by the diatom Coscinodiscus granii isolated from marine mucilage. J. Appl. Phycol. 24 (2012) 181–186. [CrossRef] [Google Scholar]
  80. N. García, J.A. López-Elías, A. Miranda, M. Martínez-Porchas, N. Huerta and A. García, Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Latin Am. J. Aquatic Res. 40 (2012) 435–440. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.