Open Access
Math. Model. Nat. Phenom.
Volume 18, 2023
Article Number 29
Number of page(s) 19
Section Physics
Published online 26 October 2023
  1. S. Abarzhi, Steady state ows in Rayleigh-Taylor instability. Phys. Rev. Lett. 81 (1998) 337–340. [CrossRef] [Google Scholar]
  2. S. Abarzhi, Low-symmetric bubbles in Rayleigh-Taylor instability. Phys. Fluids 13 (2001) 2182–2189. [CrossRef] [Google Scholar]
  3. S. Abarzhi, Review on nonlinear coherent dynamics of unstable uid interface: conservation laws and group theory. Physica Scripta T132 (2008) 014012. [CrossRef] [Google Scholar]
  4. S. Abarzhi, On fundamentals of Rayleigh-Taylor turbulent mixing. Europhys. Lett. 91 (2010) 35000. [Google Scholar]
  5. S. Abarzhi, Review of theoretical modeling approaches of Rayleigh-Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. A 368 (2010) 1809–1828. [CrossRef] [PubMed] [Google Scholar]
  6. S. Abarzhi, A. Gorobets and K. Sreenivasan, Turbulent mixing in immiscible, miscible and strati_ed media. Phys. Fluids 17 (2005) 081705. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Abarzhi, K. Nishihara and R. Rosner, Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability. Phys. Rev. E 73 (2006) 036310. [CrossRef] [PubMed] [Google Scholar]
  8. S. Abarzhi and R. Rosner, Comparative study of approaches for modeling Rayleigh-Taylor turbulent mixing. Physica Scripta T142 (2010) 014012. [CrossRef] [Google Scholar]
  9. S.I. Abarzhi, A. Bhowmick, A. Naveh, A. Pandian, N. Swisher, R. Stellingwerf and W. Arnett, Supernova, nuclear synthesis, uid instabilities and interfacial mixing. Proc. Natl. Acad. Sci. U.S.A. (2018) 201714502. [Google Scholar]
  10. B. Akula, P. Suchandra, M. Mikhaeil and D. Ranjan, Dynamics of unstably strati_ed free shear ows: an experimental investigation of coupled Kelvin-Helmholtz and Rayleigh-Taylor instability. J. Fluid Mech. 816 (2017) 619–660. [CrossRef] [Google Scholar]
  11. U. Alon, J. Hecht, D. Offer and D. Shvarts, Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all densities. Phys. Rev. Lett. 74 (1995) 534. [CrossRef] [PubMed] [Google Scholar]
  12. S. Anisimov, R. Drake, S. Gauthier, E. Meshkov and S. Abarzhi, What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing? Phil. Trans. R. Soc. A 371 (2013) 20130266. [CrossRef] [PubMed] [Google Scholar]
  13. D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present. Princeton University Press (1996). [Google Scholar]
  14. M. Buehler, H. Tang, A. van Duin and W. Goddard, Threshold crack speed controls dynamical fracture of silicon single crystals. Phys. Rev. Lett. 99 (2007) 165502. [CrossRef] [PubMed] [Google Scholar]
  15. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Oxford University Press (1961). [Google Scholar]
  16. R. Davies and G. Taylor, The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. A 200 (1950) 375–390. [Google Scholar]
  17. G. Dimonte, et al. A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the alpha-group collaboration. Phys. Fluids 16 (2004) 1668–1693. [NASA ADS] [CrossRef] [Google Scholar]
  18. P. Garabedian, On steady-state bubbles generated by Taylor instability. Proc. R. Soc. A 241 (1957) 423. [Google Scholar]
  19. J. Glimm, D. Sharp, T. Kaman and H. Lim, New directions for Rayleigh-Taylor mixing. Phil. Trans. R. Soc. A 371 (2013) 20120183. [CrossRef] [PubMed] [Google Scholar]
  20. S. Haan, Point design targets, speci_cations, and requirements for the 2010 ignition campaign on the national ignition facility. Phys. Plasmas 18 (2011) 051001. [CrossRef] [Google Scholar]
  21. D.L. Hill and S.I. Abarzhi, On the Rayleigh-Taylor unstable dynamics of 3D interfacial coherent structures with time-dependent acceleration. AIP Adv. 9 (2019) 075012. [CrossRef] [Google Scholar]
  22. D.L. Hill and S.I. Abarzhi, On the dynamics of Richtmyer-Meshkov bubbles in unstable 3d interfacial coherent structures with time-dependent acceleration. Phys. Fluids 32 (2020) 062107. [CrossRef] [Google Scholar]
  23. D.L. Hill and S.I. Abarzhi, On Rayleigh-Taylor and Richtmyer-Meshkov dynamics with inverse quadratic power-law acceleration. Front. Appl. Math. Stat. 7 (2022) 735526. [CrossRef] [Google Scholar]
  24. D.L. Hill, A.K. Bhowmich, D.V. Ilyin and S.I. Abarzhi, Group theory analysis of early-time scale-dependent dynamics of the Rayleigh-Taylor instability with time varying acceleration. Phys. Rev. Fluids 4 (2019) 063905. [CrossRef] [Google Scholar]
  25. K. Kadau, J. Barber, T. Germann, B. Holian and B. Alder, Atomistic methods in uid simulation. Phil. Trans. R. Soc. A 368 (2010) 1547. [CrossRef] [PubMed] [Google Scholar]
  26. L. Landau and E. Lifshitz, Course of Theoretical Physics. Pergamon Press, New York (1987). [Google Scholar]
  27. D. Layzer, On the instability of superposed uids in a gravitational _eld. Astrophys. J. 122 (1955) 1. [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Lugomer, The time scale for the transition to turbulence in a high Reynolds number, accelerated ow. Laser Part. Beams 34 (2016) 123–135. [CrossRef] [Google Scholar]
  29. E. Meshkov, Instability of the interface of two gases accelerated by a shock. Sov. Fluid Dyn. 4 (1969) 101–104. [Google Scholar]
  30. E. Meshkov, Some peculiar features of hydrodynamic instability development. Phil. Trans. R. Soc. A 371 (2013) 20120288. [CrossRef] [PubMed] [Google Scholar]
  31. A. Pandiani, N. Swisher and S. Abarzhi, Deterministic and stochastic dynamics of Rayleigh-Taylor mixing with a power-law time-dependent acceleration. Physica Scripta 92 (2017) 014002. [CrossRef] [Google Scholar]
  32. L. Rayleigh, Investigations of the character of the equilibrium of an incompressible heavy uid of variable density. Proc. London Math. Soc. 14 (1883) 170–177. [MathSciNet] [Google Scholar]
  33. B. Remington, et al. Rayleigh-Taylor instabilities in high-energy density settings on the national ignition facility. Proc. Natl. Acad. Sci. U.S.A. (2018) 201717236. [Google Scholar]
  34. H. Robey, Y. Zhou, A. Buckingham, P. Keiter, B. Remington and R. Drake, The time scale for the transition to turbulence in a high Reynolds number, accelerated ow. Phys. Plasmas 10 (2003) 614. [CrossRef] [Google Scholar]
  35. N. Swisher, et al. Rayleigh-Taylor mixing in supernova experiments. Phys. Plasmas 22 (2015) 102707. [CrossRef] [Google Scholar]
  36. B. Thornber, et al. Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability. Phys. Fluids 29 (2017) 105107. [CrossRef] [Google Scholar]
  37. D. Youngs, The density ratio dependence of self-similar Rayleigh-Taylor mixing. Phil. Trans. R. Soc. A 371 (2013) 20120173. [CrossRef] [PubMed] [Google Scholar]
  38. Y. Zeldovich and Y. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena. Dover, New York (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.