Open Access
Issue
Math. Model. Nat. Phenom.
Volume 19, 2024
Article Number 8
Number of page(s) 18
Section Population dynamics and epidemiology
DOI https://doi.org/10.1051/mmnp/2024006
Published online 23 April 2024
  1. K.S. Crump, D.G. Hoel, C.H. Langley and R. Peto, Fundamental carcinogenic processes and their implications for low dose risk assessment. Cancer Res. 39 (1976) 2973–2979. [Google Scholar]
  2. D.L. Sewell, Laboratory-associated infections and biosafety. Clin. Microbiol. Rev. 8 (1995) 389–405. [Google Scholar]
  3. S. Karimzadeh, R. Bhopal and H. Nguyen Tien, Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses. Epidemiol. Infect. 149 (2021) 1–8. [Google Scholar]
  4. S. Basu, Close-range exposure to a COVID-19 carrier: transmission trends in the respiratory tract and estimation of infectious dose. medRxiv (2020). [Google Scholar]
  5. S. Yezli and J.A. Otter, Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food Environ. Virol. 3 (2011) 1–30. [Google Scholar]
  6. G. Bagheri, B. Rhiede, B. Hejazi, O. Schlenczek and E. Bodenschatz, An upper bound on one-to-one exposure to infectious human respiratory particles. PNAS 118 (2021) e2110117118. [Google Scholar]
  7. Wm. Liu, S.A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models J. Math. Biol. 23 (1986) 187–204. [Google Scholar]
  8. P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40 (2000) 525–540. [Google Scholar]
  9. B. Buonomo and D. Lacitignola, Forces of infection allowing for backward bifurcation in an epidemic model with vaccination and treatment. Acta Appl Math. 122 (2012) 283–293. [Google Scholar]
  10. B. Buonomo and D. Lacitignola, On the dynamics of an SEIR epidemic model with a convex incidence rate. Ricerche mat. 57 (2008) 261–281. [Google Scholar]
  11. V. Capasso and G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42 (1978) 41–61. [Google Scholar]
  12. C. Paulo, M. Correira-Neves, T. Domingos, A.G. Murta and J. Pedrosa, Influenza infectious dose may explain the high mortality of the second and third wave of 1918–1919 influenza pandemic. PLos One 5 (2010) e11655. [Google Scholar]
  13. C.M. Kribs-Zaleta and J.X. Velasco-Hernandez, A simple vaccination model with multiple endemic states. Math. Biosci. 164 (2000) 183–201. [Google Scholar]
  14. A. Tang, Z.D. Tong, H.L. Wang, Y.X. Dai, K.F. Li, J.N. Liu, W.J. Wu, C. Yuan, M.L. Yu, P. Li and J.B. Yan, Detection of novel coronavirus by RT_PCR in stool specimen from asymptomatic child, China. Emerg. Infect. Dis. 26 (2020) 1337–1339. [Google Scholar]
  15. Z. Hu, C. Song, C. Xu, G. Jin, Y. Chen, X. Xu, H. Ma, W. Chen, Y. Lin, Y. Zheng, J. Wang, Z. Hu, Y. Yi and H. Shen, Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. 63 (2020) 706–711. [Google Scholar]
  16. J. Zhou, Y. Tan, D. Li, X. He, T. Yuan and Y. Long, Observation and analysis of 26 cases of asymptomatic SARS-COV2 infection. J. Infect. 81 (2020) e69–e70. [Google Scholar]
  17. J. Cai, W. Sun, J. Huang, M. Gamber, J. Wu and G. He, Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg. Infect. Dis. 26 (2020) 1343–1345. [Google Scholar]
  18. C. Yang and J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Eng. 17 (2020) 2708–2724. [Google Scholar]
  19. Y. Jin, W. Wang and S. Xiao, A SIRS model with a nonlinear incidence. Chaos Solitons Fractals 34 (2007) 1482–1497. [Google Scholar]
  20. P. van den Driessche and J. Watmough, Epidemic solutions and endemic catastrophies, in Dynamical Systems and Their Applications in Biology, Vol. 36. American Mathematical Society, Providence (2003) 247–257. [Google Scholar]
  21. O. Diekmann, J.A.P. Heesterbeek and J.A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4) (1990) 365–382. [Google Scholar]
  22. P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 (2002) 29–48. [CrossRef] [MathSciNet] [Google Scholar]
  23. Ministry of Health, Mexico, http://datosabiertos.salud.gob.mx/gobmx/salud/datos_abiertos/datos_abiertos_covid19.zip. [Google Scholar]
  24. J.A. Christen and C. Fox, A general purpose sampling algorithm for continuous distribution (the t-walk). Bayesian Anal. 5 (2010) 263–281. [Google Scholar]
  25. A. Svensson, A note on generation times in epidemic models. Math. Biosci. 208 (2007) 300–3011. [Google Scholar]
  26. CONAPO, http://www.conapo.gob.mx/work/models/CONAPO/Mapa_Ind_Dem18/index_2.html. [Google Scholar]
  27. I.G. Violaris, T. Lampros, K. Kalafatakis, G. Ntritsos, K. Kostikas, N. Giannakeas, M. Tsipouras, E. Glavas, D. Tsalikakis and A. Tzallas, Modelling the COVID-19 pandemic: focusing on the case of Greece. Epidemics 44 (2023) 100706. [Google Scholar]
  28. F. Saldaña, H. Flores-Arguedas, A. Camacho and I. Barradas, Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak. Math. Biosci. Eng. 17 (2020) 4165–4183. [Google Scholar]
  29. B. Tang, X. Wang, Q. Li, N.L. Bragazzi, S. Tang, Y. Xiao and J. Wu, Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J. Clin. Med. 9 (2020) 32046137. [Google Scholar]
  30. A. Acuña-Zegarra, M. Santana-Cibrian and J.X. Velasco-Hernández, Modeling behavioral change and COVID-19 containment in México: a trade-of between lockdown and compliance. Math. Biosci. 325 (2020) 108370. [Google Scholar]
  31. E.A. Iboi, O. Sharomi, C.N. Ngonghala and A. Gumel, Mathematical modeling and analysis of COVID-19 pandemic in Nigeria. Math. Biosci. Eng. 17 (2020) 7192–7220. [Google Scholar]
  32. Y. Liu, L.M. Yan, L. Wan, T.X. Xiang, A. Le, J.M. Liu, M. Peiris, L.L.M. Poon and W. Zhang, Viral dynamics in mild and severe cases of COVID-19. Lancet 20 (2020) 656–657. [Google Scholar]
  33. L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang, Y. Song, J. Xia, Q. Guo, T. Song, J. He, H.L. Yen, M. Peiris and J. Wu, SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382(12) (2020) 1177–1179. [Google Scholar]
  34. Y. Pan, D. Zhang, P. Yang, L.L.M. Poon and Q. Wang, Viral load of SARS-CoV-2 in samples. Lancet 20 (2020) 411–412. [Google Scholar]
  35. E.A. Meyerowitz, A. Richterman, R.T. Gandhi and P.E. Sax, Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann. Intern. Med. 174 (2020) 69–79. [Google Scholar]
  36. D. Kault, Superspreaders, asymptomatics and COVID-19 elimination. Med. J. Aust. 215 (2021) 140–140.e1. [Google Scholar]
  37. B. Ridenhour, J.M. Kowalik and D.K. Shay, Transmission of SARS-CoV-2: unraveling Ro : considerations for public health applications. Am. J. Public Health 104 (2014) e32–e41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.