Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 19, 2024
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 31 | |
Section | Population dynamics and epidemiology | |
DOI | https://doi.org/10.1051/mmnp/2024003 | |
Published online | 22 March 2024 |
- A.J. Lotka, Elements of Physical Biology. Williams and Wilkins, Princeton, NJ (1925). [Google Scholar]
- V. Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad. Lincei. 2 (1926) 31–113. [Google Scholar]
- G.F. Gause, The Struggle for Existence. Williams and Wilkins, Baltimore (1934). [Google Scholar]
- G.F. Gause, N.P. Smaragdova and A.A. Witt, Further studies of interaction between predators and prey. J. Anim. Ecol. 5 (1936) 1–18. [CrossRef] [Google Scholar]
- H.I. Freedman, Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980). [Google Scholar]
- R.E. Kooij and A. Zegeling, Predator—prey models with non-analytical functional response. Chaos Soliton. Fract. 123 (2019) 163–172. [CrossRef] [Google Scholar]
- G.Y. Tang, S.Y. Tang and R.A. Cheke, Global analysis of a Holling type II predator—prey model with a constant prey refuge. Nonlinear Dyn. 76 (2014) 635–647. [CrossRef] [Google Scholar]
- Y.Y. Li and J.F. Wang, Spatiotemporal patterns of a predator—prey system with an Allee effect and Holling type III functional response. Int. J. Bifurcat. Chaos 25 (2016) 1650088. [CrossRef] [Google Scholar]
- Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator—prey system with generalised Holling type III functional response. J. Dyn. Differ. Equ. 20 (2008) 535–571. [CrossRef] [Google Scholar]
- S.G. Ruan and D.M. Xiao, Global analysis in a predator—prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61 (2001) 1445–1472. [CrossRef] [Google Scholar]
- T.W. Hwang, Uniqueness of limit cycles of the predator—prey system with Beddington—DeAngelis functional response. J. Math. Anal. Appl. 290 (2004) 113–122. [CrossRef] [MathSciNet] [Google Scholar]
- Z.X. Li, L.S. Chen and J.M. Huang, Permanence and periodicity of a delayed ratio-dependent predator—prey model with Holling type functional response and stage structure. J. Comput. Appl. Math. 233 (2009) 173–187. [CrossRef] [MathSciNet] [Google Scholar]
- J. Yang, S.Y. Tang and R.A. Cheke, Global stability and sliding bifurcations of a non-smooth Gause predator—prey system. Appl. Math. Comput. 224 (2013) 9–20. [MathSciNet] [Google Scholar]
- W. Ko and K. Ryu, A qualitative study on general Gause-type predator—prey models with constant diffusion rates. J. Math. Anal. Appl. 344 (2008) 217–230. [CrossRef] [MathSciNet] [Google Scholar]
- X.X. Liu and L.H. Huang, Permanence and periodic solutions for a diffusive ratio-dependent predator—prey system. Appl. Math. Model. 33 (2009) 683–691. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Xu and Y.L. Song, Bifurcation analysis of a diffusive predator—prey system with a herd behavior and quadratic mortality. Math. Method. Appl. Sci. 38 (2015) 2994–3006. [CrossRef] [Google Scholar]
- S.L. Yuan, C.Q. Xu and T.H. Zhang, Spatial dynamics in a predator—prey model with herd behavior. Chaos 23 (2013) 003102. [Google Scholar]
- S. Ghorai and S. Poria, Emergent impacts of quadratic mortality on pattern formation in a predator—prey system. Nonlinear Dyn. 87 (2017) 2715–2734. [CrossRef] [Google Scholar]
- S. Rana, A.R. Bhowmick and T. Sardar, Invasive dynamics for a predator—prey system with Allee effect in both populations and a special emphasis on predator mortality. Chaos 31 (2021) 033150. [CrossRef] [PubMed] [Google Scholar]
- E. Beretta and Y. Kuang, Convergence results in a well-known delayed predator—prey system. J. Math. Anal. Appl. 204 (1996) 840–853. [CrossRef] [MathSciNet] [Google Scholar]
- S.G. Ruan, On nonlinear dynamics of predator—prey models with discrete delay. Math. Model. Nat. Phenom. 4 (2009) 140–188. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Xia, Z.H. Liu, R. Yuan and S.G. Ruan, The effects of harvesting and time delay on predator—prey systems with holling type II functional response. SIAM J. Appl. Math. 70 (2009) 1178–1200. [CrossRef] [MathSciNet] [Google Scholar]
- S.S. Chen, J.P. Shi and J.J. Wei, The effect of delay on a diffusive predator—prey system with Holling type-II predator functional response. Commun. Pur. Appl. Anal. 12 (2012) 481–501. [CrossRef] [Google Scholar]
- F.R. Zhang and Y. Li, Stability and Hopf bifurcation of a delayed-diffusive predator—prey model with hyperbolic mortality and nonlinear prey harvesting. Nonlinear Dyn. 88 (2017) 1397–1412. [CrossRef] [Google Scholar]
- W. Cresswell, Predation in bird populations. J. Ornithol. 152 (2011) 251–263. [CrossRef] [Google Scholar]
- E.L. Preisser and D.I. Bolnick, The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS One 3 (2008) e2465. [Google Scholar]
- W.J. Ripple and R.L. Beschta, Wolves and the ecology of fear: can predation risk structure ecosystems. Bioscience 54 (2004) 755–766. [CrossRef] [Google Scholar]
- L.Y. Zanette, A.F. White, M.C. Allen and M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334 (2011) 1398–1401. [CrossRef] [PubMed] [Google Scholar]
- F.Y. Hua, K.E. Sieving, R.J. Fletcher and C.A. Wright, Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behav. Ecol. 25 (2014) 509–519. [CrossRef] [Google Scholar]
- X.Y. Wang, L. Zanette and X.F. Zou, Modelling the fear effect in predator—prey interactions. J. Math. Biol. 73 (2016) 1179–1204. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- A. Kumar and B. Dubey, Modeling the effect of fear in a prey—predator system with prey refuge and gestation delay. Int. J. Bifurcat. Chaos 29 (2019) 1950195. [CrossRef] [Google Scholar]
- S. Halder, J. Bhattacharyya and S. Pal, Comparative studies on a predator—prey model subjected to fear and Allee effect with type I and type II foraging. J. Appl. Math. Comput. 62 (2020) 93–118. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Liu and D.Q. Jiang, Influence of the fear factor on the dynamics of a stochastic predator—prey model. Appl. Math. Lett. 112 (2021) 106756. [CrossRef] [Google Scholar]
- J.H. Wu, Theory and Applications of Partial Functional Differential Equations. Springer-Verlag, New York (1996). [CrossRef] [Google Scholar]
- Y.L. Song and J.J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator—prey system. J. Math. Anal. Appl. 301 (2005) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
- C.J. Sun, M.A. Han, Y.P. Lin and Y.Y. Chen, Global qualitative analysis for a predator—prey system with delay. Chaos Soliton. Fract. 32 (2007) 1582–1596. [CrossRef] [Google Scholar]
- X.P. Yan and W.T. Li, Bifurcation and global periodic solutions in a delayed facultative mutualism system. Physica D 227 (2007) 51–69. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Pal, T. Saha, M. Sen and M. Banerjee, A delayed predator—prey model with strong Allee effect in prey population growth. Nonlinear Dyn. 68 (2012) 23–42. [CrossRef] [Google Scholar]
- Y. Su, J.J. Wei and J.P. Shi, Hopf bifurcation in a diffusive Logistic equation with mixed delayed and instantaneous density dependence. J. Dyn. Differ. Equ. 24 (2012) 897–925. [CrossRef] [Google Scholar]
- X.F. Xu and J.J. Wei, Bifurcation analysis of a spruce budworm model with diffusion and physiological structures. J. Differ. Equ. 262 (2017) 5206–5230. [CrossRef] [Google Scholar]
- X.F. Xu and M. Liu, Global Hopf bifurcation of a general predator—prey system with diffusion and stage structures. J. Differ. Equ. 269 (2020) 8370–8386. [CrossRef] [Google Scholar]
- M. Liu, J. Cao and X.F. Xu, Global Hopf bifurcation in a phytoplankton-zooplankton system with delay and diffusion. Int. J. Bifurcat. Chaos 31 (2021) 2150114. [CrossRef] [Google Scholar]
- S.B. Hsu, A survey of constructing Lyapunov functions for mathmatical models in population biology. Taiwan. J. Math. 9 (2005) 151–173. [Google Scholar]
- T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Am,. Math. Soc. 352 (2000) 2217–2238. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.