Open Access
Issue
Math. Model. Nat. Phenom.
Volume 19, 2024
Article Number 14
Number of page(s) 14
Section Population dynamics and epidemiology
DOI https://doi.org/10.1051/mmnp/2024011
Published online 20 June 2024
  1. D.P. Wilson, Mathematical modelling of chlamydia. ANZIAM J. 45 (2003/2004) C201–C214. [CrossRef] [Google Scholar]
  2. F.Y.M. Wan and G.A. Enciso, Optimal proliferation and differentiation of chlamydia trachomatis. Stud. Appl. Math. 139 (2017) 129–178. [Google Scholar]
  3. G. Enciso, C. Sütterlin, M. Tan and F.Y.M. Wan, Stochastic chlamydia dynamics and optimal spread. Bull. Math. Biol. 83 (2021) Paper No. 24, 35. [CrossRef] [PubMed] [Google Scholar]
  4. J.K. Lee, G.A. Enciso, D. Boassa, C.N. Chander, T.H. Lou, Pairawan S.S., M.C. Guo, Wan F.Y.M., M.H. Ellisman, C. Sütterlin and M. Tan, Replication-dependent size reduction precedes differentiation in chlamydia trachomatis. Nat. Commun. 45 (2018) 3884–3891. [Google Scholar]
  5. P. Haccou, P. Jagers and V.A. Vatutin, Branching processes: variation, growth, and extinction of populations. Vol. 5 of Cambridge Studies in Adaptive Dynamics. Cambridge University Press, Cambridge; IIASA, Laxenburg (2007). [Google Scholar]
  6. M. Kimmel and D.E. Axelrod, Branching processes in biology, Vol. 19 of Interdisciplinary Applied Mathematics, 2nd edn. Springer, New York (2015). [CrossRef] [Google Scholar]
  7. A. Bogdanov, P. Kevei, M. Szalai and D. Virok. Stochastic modeling of in vitro bactericidal potency. Bull. Math. Biol. 84 (2022) Paper No. 6, 18. [CrossRef] [Google Scholar]
  8. O. Hernández-Lerma and J.B. Lasserre, Discrete-time Markov control processes. Vol. 30 of Applications of Mathematics (New York). Springer-Verlag, New York (1996). [Google Scholar]
  9. M. Kimmel, Quasistationarity in a branching model of division-within-division, in Classical and Modern Branching Processes (Minneapolis, MN, 1994). Vol. 84 of IMA Vol. Math. Appl.. Springer, New York (1997) 157–164. [Google Scholar]
  10. A. Marguet and C. Smadi, Spread of parasites affecting death and division rates in a cell population. Stochastic Process. Appl. 168 (2024) Paper No. 104262, 31. [Google Scholar]
  11. C. Elwell, K. Mirrashidi and J. Engel, Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14 (2016) 385–400. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.