Open Access
Issue
Math. Model. Nat. Phenom.
Volume 19, 2024
Article Number 23
Number of page(s) 14
Section Physics
DOI https://doi.org/10.1051/mmnp/2024019
Published online 10 December 2024
  1. J.C. Garwood, R.C. Musgrave and A.J. Lucas, Life in internal waves. Oceanography 33 (2020) 38–49. [CrossRef] [Google Scholar]
  2. R.N. Ibragimov and A. Tartakovsky, Spectral analysis of the efficiency of vertical mixing in the deep ocean due to interaction of tidal currents with a ridge running down a continental slope. Math. Model. Natural Phenomena 9 (2014) 119–137. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. M.F. Lavín and S.G. Marinone, An overview of the physical oceanography of the gulf of california. Nonlinear- Processes in Geophysical Fluid Dynamics: a tribute to the scientific ‘work of Pedro Ripa (2003) 173–204. [CrossRef] [Google Scholar]
  4. F.A. Velazquez-Munoz and A. Filonov, Tidal energy flows between the midriff islands in the gulf of California. Energies 14 (2021) 621. [CrossRef] [Google Scholar]
  5. A. Filonov, I. Tereshchenko, L.B. Ladah, D.A. Pantoja-Gonzalez and F.A. Velazquez-Muñoz, High amplitude internal tidal waves generated over an underwater sill in the gulf of california. Continent. Shelf Res. 210 (2020) 104290. [CrossRef] [Google Scholar]
  6. A.F. Blumberg and G.L. Mellor, A description of a three-dimensional coastal ocean circulation model. Three- dimensional Coastal Ocean Models 4 (1987) 1–16. [CrossRef] [Google Scholar]
  7. C. Ai, Y. Ma, C. Yuan and G. Dong, Non-hydrostatic model for internal wave generations and propagations using immersed boundary method. Ocean Eng. 225 (2021) 108801. [CrossRef] [Google Scholar]
  8. J. Kampf, Advanced Ocean Modelling: Using Open-source Software. Springer Science & Business Media (2010). [Google Scholar]
  9. A.S. Almgren, J.B. Bell and W.Y. Crutchfield, Approximate projection methods: Part I. Inviscid analysis. SIAM J. Sci. Comput. 22 (2000) 1139–1159. [CrossRef] [MathSciNet] [Google Scholar]
  10. O.B. Fringer, S.W. Armfield and R.L. Street, Reducing numerical diffusion in interfacial gravity wave simulations. Int. J. Numer. Methods Fluids 49 (2005) 301–329. [CrossRef] [Google Scholar]
  11. N.L. Fischer and H.P. Pfeiffer, Unified discontinuous Galerkin scheme for a large class of elliptic equations. Phys. Rev. D 105 (2022) 024034. [CrossRef] [Google Scholar]
  12. T. Bui-Thanh, From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. J. Computat. Phys. 295 (2015) 114–146. [CrossRef] [Google Scholar]
  13. R.A. Locarnini, T.P. Boyer, A.V. Mishonov, J.R. Reagan, M.M. Zweng, O.K. Baranova, H.E. Garcia, D. Seidov, K.W. Weathers, C.R. Paver et al., World Ocean Atlas 2018, Vol. 5: Density. NOAA Atlas NESDIS 85 (2019) 41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.