Open Access
Issue
Math. Model. Nat. Phenom.
Volume 19, 2024
Article Number 16
Number of page(s) 15
Section Mathematical methods
DOI https://doi.org/10.1051/mmnp/2024013
Published online 24 July 2024
  1. A. Corno, M. Owen, A. Cangiani, E. Hall and A. Rona, Physiological Fontan procedure. Front. Pediatr. 7 (2019). [CrossRef] [Google Scholar]
  2. M. Schafstedde, P. Yevtushenko, S. Nordmeyer, et al., Virtual treatment planning in three patients with uni- ventricular physiology using computational fluid dynamics-pitfalls and strategies. Front. Cardiovasc. Med. 9 (2022). [CrossRef] [Google Scholar]
  3. K. Marshall, Y. D’Udekem, G. Sholler, et al., Health-related quality of life in children, adolescents, and adults with a Fontan circulation: a meta-analysis. J. Am. Heart Assoc. 9 (2020) e014172. [CrossRef] [Google Scholar]
  4. T. Fredenburg, T. Johnson and M. Cohen, The Fontan procedure: anatomy, complications, and manifestations of failure. RadioGraphics 31 (2011) 453–463. [CrossRef] [PubMed] [Google Scholar]
  5. I. Schwartz, C. McCracken, Ch. Petit and R. Sachdeva, Late outcomes after the fontan procedure in patients with single ventricle: a meta-analysis. Heart 104 (2018) 1508–1514. [CrossRef] [PubMed] [Google Scholar]
  6. P. Trusty, T. Slesnick, Z. Wei, et al., Fontan surgical planning: previous accomplishments, current challenges, and future directions. J. Cardiovasc. Trans. Res. 11 (2018) 133–144. [CrossRef] [PubMed] [Google Scholar]
  7. D. de Zelicourt and V. Kurtcuoglu, Patient-specific surgical planning, where do we stand? The example of the Fontan procedure. Ann. Biomed. Eng. 44 (2016) 174–186. [CrossRef] [PubMed] [Google Scholar]
  8. W. Yang, F. Chan, V. Reddy, et al., Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149 (2015) 247–255. [CrossRef] [Google Scholar]
  9. A. Baretta, C. Corsini, W. Yang, et al., Modelling of congenital hearts alliance (MOCHA) investigators. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philos. Trans. 369 (2011) 4316–4330. [Google Scholar]
  10. F. Raimondi, D. Martins, R. Coenen, et al., Prevalence of venovenous shunting and high-output state quantified with 4D flow MRI in patients with Fontan circulation. Radiology Cardiothorac. Imaging 3 (2021) e210161. [CrossRef] [Google Scholar]
  11. K. Whitehead, M. Harris, A. Glatz, et al., Status of systemic to pulmonary arterial collateral flow after the Fontan procedure. Am. J. Cardiol. 115 (2015) 1739–1745. [CrossRef] [Google Scholar]
  12. T. Dobroserdova, Yu. Vassilevski, S. Simakov, et al., Two-scale haemodynamic modelling for patients with Fontan circulation. Russ. J. Numer. Anal. Math. Model. 36 (2021) 267–278. [CrossRef] [Google Scholar]
  13. Yu. Vassilevski, M. Olshanskii, S. Simakov, et al., Personalized Computational Hemodynamics. Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy. Academic Press (2020). [Google Scholar]
  14. P. Hoskins, K. Martin and A. Thrush, Diagnostic Ultrasound: Physics and Equipment, 2nd edn. Cambridge: Cambridge University, 2010. [CrossRef] [Google Scholar]
  15. P. Ciliberti, P. Ciancarella, P. Brun, et al., Cardiac imaging in patients after Fontan palliation: which test and when? frontiers in pediatrics. Front Pediatr. 10 (2022). [CrossRef] [Google Scholar]
  16. T. Leiner, J. Bogaert, M. Friedrich, et al., SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 22 (2020). [Google Scholar]
  17. S. Moscatelli, N. Borrelli, J. Sabatino, et al., Role of cardiovascular imaging in the follow-up of patients with Fontan. Circulation 9 (2022). [Google Scholar]
  18. P. Ciliberti, P. Ciancarella, P. Brun, et al., Cardiac imaging in patients after Fontan palliation: which test and ehen? Front. Pediatr. 10 (2022). [CrossRef] [Google Scholar]
  19. T. Leiner, J. Bogaert, M. Friedrich, et al., SCMR position paper (2020) on clinical indications for cardiovascular magnetic Resonance. J. Cardiovasc. Magn. Reson. 22 (2020). [Google Scholar]
  20. W. Loughborough, M. Yeong and M. Hamilton, Computed tomography in congenital heart disease: how generic principles can be applied to create bespoke protocols in the Fontan circuit. Quant. Imaging Med. Surg. 7 (2017) 79–87. [CrossRef] [Google Scholar]
  21. K. Pushparajah, Ph. Duong and S. Mathur, Cardiovascular MRI and CT in congenital heart disease. Echo Res. Pract. 6 (2019) R121–R138. [CrossRef] [Google Scholar]
  22. T. Leiner, J. Bogaert, M. Friedrich, et al., SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 22 (2020). [Google Scholar]
  23. P. Yushkevich, J. Piven, C. Heather, et al., User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31 (2006) 1116–1128. [CrossRef] [Google Scholar]
  24. M. Terada, Y. Takehara, H. Isoda, et al., Technical background for 4D flow MR imaging. Magn. Reson. Med. Sci. 21 (2022) 267–277. [CrossRef] [PubMed] [Google Scholar]
  25. H. Isoda and A. Fukuyama, Quality control for 4D flow MR imaging. Magn. Reson. Med. Sci. 21 (2022) 278–292. [CrossRef] [PubMed] [Google Scholar]
  26. H. Ha, Accuracy evaluation of blood flow distribution in the Fontan circulation: effects of resolution and velocity noise. J. Visual 22 (2019) 245–257. [Google Scholar]
  27. J. Geiger, F. Callaghan, B. Burkhardt, et al., Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr. Radiol. 51 (2021) 1503–1517. [CrossRef] [PubMed] [Google Scholar]
  28. K. Jarvis, S. Schnell, A. Barker, et al., Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources. Magn. Reson. Med. 81 (2019) 1205–1218. [CrossRef] [PubMed] [Google Scholar]
  29. J. Garay, H. Mella, J. Sotelo, et al., Assessment of 4D flow MRI’s quality by verifying its Navier-Stokes compatibility. Magn. Reson. Med. 38 (2022). [Google Scholar]
  30. D. Rutkowski, G. Barton, Ch. Francois, et al., Analysis of cavopulmonary and cardiac flow characteristics in Fontan patients: comparison with healthy volunteers. J. Magn. Reson. Imaging 49 (2019) 1786–1799. [CrossRef] [PubMed] [Google Scholar]
  31. F. Puricelli, I. Voges, P. Gatehouse, et al., Performance of cardiac MRI in pediatric and adult patients with Fontan circulation. Radiol. Cardiothorac. Imaging 4 (2022). [CrossRef] [Google Scholar]
  32. Ph. Trusty, T. Slesnick, Zh. Wei, et al., Fontan surgical planning: previous accomplishments, current challenges, and future directions. J. Cardiovasc. Transl. Res. 11 (2018) 133–144. [CrossRef] [PubMed] [Google Scholar]
  33. S. Fratz, T. Chung, G. Greil, et al., Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J. Cardiovasc. Magn. Reson. 15 (2013). [Google Scholar]
  34. A. Stalder, M. Russe, A. Frydrychowicz, et al., Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson. Med. 60 (2008) 1218–1231. [CrossRef] [PubMed] [Google Scholar]
  35. L. Brix, S. Ringgaard, A. Rasmusson, et al., Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J. Cardiovasc. Magn. Reson. 11 (2009). [CrossRef] [Google Scholar]
  36. M. Gabbour, S. Schnell, K. Jarvis, et al., 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatr. Radiol. 45 (2015) 804–813. [CrossRef] [PubMed] [Google Scholar]
  37. K. Jarvis, M. Vonder, A. Barker, et al., Hemodynamic evaluation in patients with transposition of the great arteries after the arterial switch operation: 4D flow and 2D phase contrast cardiovascular magnetic resonance compared with Doppler echocardiography. J. Cardiovasc. Magn. Reson. 18 (2016) 59. [CrossRef] [Google Scholar]
  38. M. Sieren, C. Berlin, T. Oechtering, et al., Comparison of 4D flow MRI to 2D flow MRI in the pulmonary arteries in healthy volunteers and patients with pulmonary hypertension. PLoS One 14 (2019). [Google Scholar]
  39. B. Burkhardt, Ch. Kellenberger, F. Callaghan, et al., Flow evaluation software for four-dimensional flow MRI: a reliability and validation study. Acad. Radiol. 128 (2023) 1225–1235. [Google Scholar]
  40. A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Computational Models for the Human Body. Vol. 12 of Handbook of Numerical Analysis. Elsevier (2004) 3–127. [Google Scholar]
  41. T. Gamilov, Yu. Ivanov, P. Kopylov, et al., Patient specific haemodynamic modeling after occlusion treatment in leg. Math. Model. Nat. Phenom. 9 (2014) 85–97. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  42. D. Burenchev, F. Kopylov, A. Bykova, et al., Mathematical modelling of circulation in extracranial brachocephalic arteries at pre-operation stage in carotid endarterectomy. Russ. J. Cardiol. 4 (2017) 88–92. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.