Open Access
Issue |
Math. Model. Nat. Phenom.
Volume 19, 2024
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 15 | |
Section | Mathematical physiology and medicine | |
DOI | https://doi.org/10.1051/mmnp/2024017 | |
Published online | 07 October 2024 |
- I. Ghebrehiwet, N. Zaki, R. Damseh, Rafat and M. Mohamad, Revolutionizing personalized medicine with generative AI: a systematic review. Artif. Intell. Rev. 57 (2024) 128. [CrossRef] [Google Scholar]
- M. Craig, J.L. Gevertz, I. Kareva and K.P. Wilkie, A practical guide for the generation of model-based virtual clinical trials. Front. Syst. Biol. 3 (2023) 5287–5303. [CrossRef] [Google Scholar]
- M.-C. Gosselin, E. Neufeld, H. Moser, E. Huber, S. Farcito, L. Gerber, M. Jedensjo, I. Hilber, F. Di Gennaro, B. Lloyd, E. Cherubini, D. Szczerba, W. Kainz and N. Kuster, Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0. Phys. Med. Biol. 59 (2014) 5287–5303. [CrossRef] [PubMed] [Google Scholar]
- R.J. Allen, T.R. Rieger and C.J. Musante, Efficient generation and selection of virtual populations in quantitative systems pharmacology models. CPT Pharmacometrics Syst. Pharmacol. 5 (2016) 140–146. [CrossRef] [Google Scholar]
- P.H. Charlton, J. Mariscal Harana, S. Vennin, Y. Li, P. Chowienczyk and J. Alastruey, Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Am. J. Phys. Heart Circ. Physiol. 317 (2019) H1062–H1085. [CrossRef] [PubMed] [Google Scholar]
- M.A. Remli, S. Deris, M.S. Mohamad, S. Omatu and J.M. Corchado, An enhanced scatter search with combined opposition-based learning for parameter estimation in large-scale kinetic models of biochemical systems. Eng. Appl. Artif. Intell. 62 (2017) 164–180. [CrossRef] [Google Scholar]
- H. Saxton, T. Schenkel, I. Halliday and X. Xu, Personalised parameter estimation of the cardiovascular system: Leveraging data assimilation and sensitivity analysis. J. Computat. Sci. 74 (2023) 102158. [CrossRef] [Google Scholar]
- D. Nolte and C. Bertoglio, Inverse problems in blood flow modeling: a review. Int. J. Numer. Method Biomed. Eng. 38 (2022) e3613. [CrossRef] [PubMed] [Google Scholar]
- P.I. Frazier, A Tutorial on Bayesian Optimization. (2018) arXiv:1807.02811 [stat.ML]. [Google Scholar]
- B. Shahriari, K. Swersky, Z. Wang, R.P. Adams and N. de Freitas, Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104 (2016) 148–175. [CrossRef] [Google Scholar]
- E.A. Wan and R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation. Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373). Lake Louise, AB, Canada, (2000) 153–158. [Google Scholar]
- P. Moireau and D. Chapelle, Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. ESAIM Control Optim. Calc. Var. 17 (2011) 380–405. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- R. Lal, B. Mohammadi and F. Nicoud, Data assimilation for identification of cardiovascular network characteristics. Int. J. Numer. Methods Biomed. Eng. 33 (2017) e2824. [CrossRef] [Google Scholar]
- A. Caiazzo, F. Caforio, G. Montecinos, L.O. Muller, P.J. Blanco and E.F. Toro, Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data. Int. J. Numer. Methods Biomed. Eng. 33 (2017) e2843. [CrossRef] [PubMed] [Google Scholar]
- A. Giani, R. Micciolo, E. Zoico, G. Mazzali, M. Zamboni and F. Fantin, Cardio-ankle vascular index and aging: differences between CAVI and CAVI0. J. Clin. Med. 12 (2023) 6726. [CrossRef] [Google Scholar]
- J. Ibata, H. Sasaki, T. Kakimoto, S. Matsuno, M. Nakatani, M. Kobayashi, K. Tatsumi, Y. Nakano, H. Wakasaki, H. Furuta, M. Nishi and K. Nanjo, Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure. Diabetes Res. Clin. Pract. 80 (2008) 265–270. [CrossRef] [Google Scholar]
- T. Gamilov and S. Simakov, Blood flow under mechanical stimulations. Adv. Intell. Syst. Comput. 1028 (2020) 143–150. [CrossRef] [Google Scholar]
- S. Simakov, A. Timofeev, T. Gamilov, P. Kopylov, D. Telyshev and Y. Vassilevski, Analysis of the impact of left ventricular assist devices on the systemic circulation. Russ. J. Numer. Anal. Math. Model. 35 (2020) 295–314. [CrossRef] [Google Scholar]
- E. Boileau, P. Nithiarasu, P.J. Blanco, L.O. Müller, F.E. Fossan, L.R. Hellevik, W.P. Donders, W. Huberts, M. Willemet and J. Alastruey, A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Method Biomed. Eng. 31 (2015) e02722. [CrossRef] [PubMed] [Google Scholar]
- T. Korakianitis and Y. Shi, Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomechanics 39 (2006) 1964–1982. [CrossRef] [Google Scholar]
- Y. Sun, B.J. Sjoüberg, P. Ask, D. Loyd and B. Wranne, Mathematical model that characterizes transmitral and pulmonary venous flow velocity patterns. Am. J. Physiol. 268 (1995) H476–H489. [Google Scholar]
- D.F. Young and F.Y. Tsai, Flow characteristics in models of arterial stenoses. I. Steady flow. J. Biomechanics 6 (1973) 395–410. [CrossRef] [Google Scholar]
- D.F. Young and F.Y. Tsai, Flow characteristics in models of arterial stenoses. II. Unsteady flow. J. Biomechanics 6 (1973) 547–559. [CrossRef] [Google Scholar]
- T. Korakianitis and Y. Shi, A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med. Eng. Phys. 28 (2006) 613–628. [CrossRef] [Google Scholar]
- J. Stamler, R. Stamler and J.D. Neaton, Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch. Intern. Med. 153 (1993) 598–615 [CrossRef] [PubMed] [Google Scholar]
- S.S. Hickson, M. Butlin, M. Graves, V. Taviani, A.P. Avolio, C.M. McEniery and I.B. Wilkinson, The relationship of age with regional aortic stiffness and diameter. JACC Cardiovasc. Imaging 3 (2010) 1247–1255. [CrossRef] [Google Scholar]
- A. Borowska, H. Gao, A. Lazarus and D. Husmeier, Bayesian optimisation for efficient parameter inference in a cardiac mechanics model of the left ventricle, Int. J. Numer. Method Biomed. Eng. 38 (2022) e3593. [CrossRef] [PubMed] [Google Scholar]
- V.A. Milyagin, I.V. Milyagina, M.A. Purygina and T.A. Osipenkova, Method of Volume Sphygmography on VaSera VS-1500 N Device. Methodical Recommendations. Smolensk (2014) 30. [Google Scholar]
- Yu.A. Vasyuk, S.V. Ivanova, E.L. Shkolnik, Yu.V. Kotovskaya, V.A. Milyagin, V.E. Oleynikov, Ya.A. Orlova, A.N. Sumin, A.A. Baranov, S.A. Boytsov, A.S. Galyavich, Zh.D. Kobalava, O.V. Kozhevnikova, A.O. Konradi, Yu.M. Lopatin, V.Yu. Mareev, D.S. Novikova, R.G. Oganov, A.N. Rogoza, O.P. Rotar, N.V. Sergatskaya and V.V. Skibitsky, Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovasc. Ther. Prev. 15 (2016) 4–19. [CrossRef] [Google Scholar]
- T. Okura, S. Watanabe, M. Kurata, S. Manabe, M. Koresawa, J. Irita, D. Enomoto, K. Miyoshi, T. Fukuoka and J. Higaki, Relationship between cardio-ankle vascular index (CAVI) and carotid atherosclerosis in patients with essential hypertension. Hypertens. Res. 30 (2007) 335–340. [CrossRef] [PubMed] [Google Scholar]
- T. Kumagai, T. Kasai, M. Kato, R. Naito, K.I. Maeno, S. Kasagi, F. Kawana, S. Ishiwata and K. Narui, Establishment of the cardio-ankle vascular index in patients with obstructive sleep apnea. Chest 136 (2009) 779–786. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.