Issue
Math. Model. Nat. Phenom.
Volume 20, 2025
Special Issue to honour Vitaly's work
Article Number 18
Number of page(s) 18
DOI https://doi.org/10.1051/mmnp/2025016
Published online 10 July 2025
  1. C. Barril, A. Calsina and O. Diekmann, J.Z. Farkas, On competition through growth reduction, e-print arXiv:2303.02981, https://doi.org/10.48550/arXiv.2303.02981 [Google Scholar]
  2. N. Bessonov and V. Volpert, Dynamic Models of Plant Growth. Collection: Mathematics and Mathematical Modelling, Publibook, Paris (2006) 68. ISBN:2-7483-3165-6. [Google Scholar]
  3. N. Bessonov, F. Crauste and V. Volpert, Modelling of plant growth with apical or basal meristem. Math. Model. Nat. Phenom. 6 (2011) 107-132. [Google Scholar]
  4. F. Herrera and S. Trofimchuk, Global dynamics of a size-structured forest model. e-print arXiv:2401.08618, https://doi.org/10.48550/arXiv.2401.08618 [Google Scholar]
  5. C. Barril, A. Calsina, O. Diekmann and J.Z. Farkas, On hierarchical competition through reduction of individual growth. J. Math. Biol. 88 (2024) 66. [Google Scholar]
  6. T. Naito, On linear autonomous retarded equations with an abstract phase space for infinite delay. J. Diff. Equ. 33 (1979) 74-91. [Google Scholar]
  7. F. Herrera and S. Trofimchuk, On the global dynamics of a forest model with monotone positive feedback and memory, 2023 MATRIX Annals, Springer (2025). [Google Scholar]
  8. O. Diekmann and M. Gyllenberg, Equations with infinite delay: blending the abstract and the concrete. J. Diff. Equ. 252 (2012) 819-851. [Google Scholar]
  9. M.A. Caraballo-Ortiz, E. Santiago-Valentin and T.A. Carlo, Flower number and distance to neighbours affect the fecundity of Goetzea elegans (Solanaceae). J. Trop. Ecol. 27 (2011) 521-528. [Google Scholar]
  10. H.L. Smith, Monotone Dynamical Systems. American Mathematical Society, Providence (1995). [Google Scholar]
  11. T. Krisztin, H.-O. Walther and J. Wu, Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback. Fields Institute Monograph Series, Vol. 11. AMS, Providence, RI (1999). [Google Scholar]
  12. T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed positive feedback and the global attractor. J. Dyn. Differ. Equ. 13 (2001) 1-57. [Google Scholar]
  13. T. Krisztin and G. Vas, The unstable set of a periodic orbit for delayed positive feedback. J. Dyn. Differ. Equ. 28 (2016) 805-855. [Google Scholar]
  14. F. Herrera and S. Trofimchuk, Dynamics of one-dimensional maps and Gurtin-MacCamy's population model. Part I: asymptotically constant solutions. Ukrainian Math. J. 75 (2023) 1635-1651. [Google Scholar]
  15. A. Volpert, Vit. Volpert and Vl. Volpert, Traveling Wave Solutions of Parabolic Systems. Translation of Mathematical Monographs, Vol. 140, American Mathematical Society, Providence (1994). [Google Scholar]
  16. H.W. Ellis, On the dual of L1. Can. Math. Bull. 8 (1965) 809-818. [CrossRef] [Google Scholar]
  17. E.P. Odum, The strategy of ecosystem development. Science 164 (1969) 262-270. [Google Scholar]
  18. D.B. Botkin, Forest Dynamics: An Ecological Model. Oxford University Press (1993). [Google Scholar]
  19. N.L. Christensen, An historical perspective on forest succession and its relevance to ecosystem restoration and conservation practice in North America. Forest Ecol. Manage. 330 (2014) 312-322. [Google Scholar]
  20. L. Poorter, L. Amissah, F. Bongers, I. Hordijk, J. Kok, S.G.W. Laurance, M. Lohbeck, M. Martinez-Ramos, T. Matsuo, J.A. Meave, R. Munoz, M. Pena-Claros and M.T. van der Sande, Successional theories. Biol. Rev. 98 (2023) 2049-2077. [CrossRef] [PubMed] [Google Scholar]
  21. V. Volpert and S. Trofimchuk, Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities. Nonlinearity 32 (2019) 2593-2632. [Google Scholar]
  22. A. Ducrot, M. Marion and V. Volpert, Spectrum of some integro-differential operators and stability of travelling waves. Nonlinear Anal. TMA 74 (2011) 4455-4473. [Google Scholar]
  23. T. Kuuluvainen, Conceptual models of forest dynamics in environmental education and management: keep it as simple as possible, but no simpler. For. Ecosyst. 3 (2016) 18. [Google Scholar]
  24. C.D. Oliver, Forest development in North America following major disturbances. Forest Ecol. Manage. 3 (1980) 153-168. [Google Scholar]
  25. P. Magal and Z. Zhang, Competition for light in forest population dynamics: from computer simulator to mathematical model. J. Theoret. Biol. 419 (2017) 290-304. [Google Scholar]
  26. P. Fransson, A. Brannström, O. Franklin, A tree's quest for light-optimal height and diameter growth under a shading canopy. Tree Physiol. 41 (2021) 1-11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.