Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Development and validation of predictive model based on deep learning method for classification of dyslipidemia in Chinese medicine

Jinlei Liu, Wenchao Dan, Xudong Liu, Xiaoxue Zhong, Cheng Chen, Qingyong He and Jie Wang
Health Information Science and Systems 11 (1) (2023)
https://doi.org/10.1007/s13755-023-00215-0

Modelling Keloids Dynamics: A Brief Review and New Mathematical Perspectives

R. Eftimie, G. Rolin, O. E. Adebayo, S. Urcun, F. Chouly and S. P. A. Bordas
Bulletin of Mathematical Biology 85 (12) (2023)
https://doi.org/10.1007/s11538-023-01222-8

Immune‐checkpoint inhibitor therapy response evaluation using oncophysics‐based mathematical models

Mustafa Syed, Matthew Cagely, Prashant Dogra, Lauren Hollmer, Joseph D. Butner, Vittorio Cristini and Eugene J. Koay
WIREs Nanomedicine and Nanobiotechnology 15 (2) (2023)
https://doi.org/10.1002/wnan.1855

Mathematical modeling of cancer immunotherapy for personalized clinical translation

Joseph D. Butner, Prashant Dogra, Caroline Chung, et al.
Nature Computational Science 2 (12) 785 (2022)
https://doi.org/10.1038/s43588-022-00377-z

Towards the Dependence on Parameters for the Solution of the Thermostatted Kinetic Framework

Bruno Carbonaro and Marco Menale
Axioms 10 (2) 59 (2021)
https://doi.org/10.3390/axioms10020059

The mathematical analysis towards the dependence on the initial data for a discrete thermostatted kinetic framework for biological systems composed of interacting entities

Marco Menale and Bruno Carbonaro
AIMS Biophysics 7 (3) 204 (2020)
https://doi.org/10.3934/biophy.2020016

Enhancing network activation in natural killer cells: predictions from in silico modeling

Stacey D Finley and Sahak Z Makaryan
Integrative Biology 12 (5) 109 (2020)
https://doi.org/10.1093/intbio/zyaa008

Analysis of a breast cancer mathematical model by a new method to find an optimal protocol for HER2-positive cancer

OPhir Nave, Miriam Elbaz and Svetlana Bunimovich-Mendrazitsky
Biosystems 197 104191 (2020)
https://doi.org/10.1016/j.biosystems.2020.104191

Breast cancer vaccination comes to age: impacts of bioinformatics

Sepideh Parvizpour, Jafar Razmara and Yadollah Omidi
BioImpacts 8 (3) 223 (2018)
https://doi.org/10.15171/bi.2018.25

Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

Carlo Bianca and Caterina Mogno
Communications in Nonlinear Science and Numerical Simulation 54 221 (2018)
https://doi.org/10.1016/j.cnsns.2017.06.007

Intelligent Computing Theories and Application

Giulia Russo, Marzio Pennisi, Roberta Boscarino and Francesco Pappalardo
Lecture Notes in Computer Science, Intelligent Computing Theories and Application 10362 169 (2017)
https://doi.org/10.1007/978-3-319-63312-1_15

Modeling the antigen recognition by B-cell and T-cell receptors through thermostatted kinetic theory methods

Carlo Bianca and Louis Brézin
International Journal of Biomathematics 10 (05) 1750072 (2017)
https://doi.org/10.1142/S1793524517500723

Computational Modeling of PI3K/AKT and MAPK Signaling Pathways in Melanoma Cancer

Francesco Pappalardo, Giulia Russo, Saverio Candido, et al.
PLOS ONE 11 (3) e0152104 (2016)
https://doi.org/10.1371/journal.pone.0152104

Mathematical Modelling and Analysis of the Tumor Treatment Regimens with Pulsed Immunotherapy and Chemotherapy

Liuyong Pang, Lin Shen and Zhong Zhao
Computational and Mathematical Methods in Medicine 2016 1 (2016)
https://doi.org/10.1155/2016/6260474

Agent based simulations in disease modeling Comment on “Towards a unified approach in the modeling of fibrosis: A review with research perspectives” by Martine Ben Amar and Carlo Bianca

Francesco Pappalardo and Marzio Pennisi
Physics of Life Reviews 17 110 (2016)
https://doi.org/10.1016/j.plrev.2016.05.006

A methodological approach for using high-level Petri Nets to model the immune system response

Marzio Pennisi, Salvatore Cavalieri, Santo Motta and Francesco Pappalardo
BMC Bioinformatics 17 (S19) (2016)
https://doi.org/10.1186/s12859-016-1361-6

Computational modeling of brain pathologies: the case of multiple sclerosis

Francesco Pappalardo, Abdul-Mateen Rajput and Santo Motta
Briefings in Bioinformatics bbw123 (2016)
https://doi.org/10.1093/bib/bbw123

Advances in Computational Immunology

Francesco Pappalardo, Vladimir Brusic, Marzio Pennisi and Guanglan Zhang
Journal of Immunology Research 2015 1 (2015)
https://doi.org/10.1155/2015/170920

Agent based modeling of the effects of potential treatments over the blood–brain barrier in multiple sclerosis

Marzio Pennisi, Giulia Russo, Santo Motta and Francesco Pappalardo
Journal of Immunological Methods 427 6 (2015)
https://doi.org/10.1016/j.jim.2015.08.014

A Cognitive Computational Model Inspired by the Immune System Response

Mohamed Abdo Abd Al-Hady, Amr Ahmed Badr and Mostafa Abd Al-Azim Mostafa
BioMed Research International 2014 1 (2014)
https://doi.org/10.1155/2014/852181

Induction of T-cell memory by a dendritic cell vaccine: a computational model

Francesco Pappalardo, Marzio Pennisi, Alessia Ricupito, Francesco Topputo and Matteo Bellone
Bioinformatics 30 (13) 1884 (2014)
https://doi.org/10.1093/bioinformatics/btu059

Agent-Based Modeling of the Immune System: NetLogo, a Promising Framework

Ferdinando Chiacchio, Marzio Pennisi, Giulia Russo, Santo Motta and Francesco Pappalardo
BioMed Research International 2014 1 (2014)
https://doi.org/10.1155/2014/907171

Cancer Vaccines: State of the Art of the Computational Modeling Approaches

Francesco Pappalardo, Ferdinando Chiacchio and Santo Motta
BioMed Research International 2013 1 (2013)
https://doi.org/10.1155/2013/106407

Optimal vaccination schedule search using genetic algorithm over MPI technology

Cristiano Calonaci, Ferdinando Chiacchio and Francesco Pappalardo
BMC Medical Informatics and Decision Making 12 (1) (2012)
https://doi.org/10.1186/1472-6947-12-129