Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Page(s) 186 - 203
Published online 06 June 2012
  1. A.K. Abbas, A.H. Lichtman, S. Pillai. Cellular and Molecular Immunology, 6th edn. (Elsevier, 2007). [Google Scholar]
  2. T. Alarcon, H.M. Byrne, P.K. Maini. A multiple scale model for tumor growth, SIAM. Multiscale Model Simul., 3, (2005) 440-475. [Google Scholar]
  3. R. Antia, C.T. Bergstrom, S.S. Pilyugin, S.M. Kaech, R. Ahmed. Models of CD8+ responses : 1. What is the antigen-independent proliferation program, J Theor Biol. 221, (2003) 585-598. [CrossRef] [PubMed] [Google Scholar]
  4. V. Apostolopoulos, C. Osinski, I.F. McKenzie. MUC1 cross-reactive Gal alpha(1,3)Gal antibodies in humans switch immune responses from cellular to humoral, Nat. Med. 4, (1998) 315-320. [CrossRef] [PubMed] [Google Scholar]
  5. T. Barthlott, G. Kassiotis, B. Stockinger. T cell regulation as a side effect of homeostasis and competition, J. Exp. Med. 4, (2003) 451-460. [CrossRef] [Google Scholar]
  6. G.I. Bell. Mathematical Model of Clonal Selection and Antibody Production, Nature, 228, (1970) 739-744. [CrossRef] [PubMed] [Google Scholar]
  7. N. Bellomo, M. Delitala. From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Physics of Life Reviews, 5, (2008) 183-206. [Google Scholar]
  8. G.A. Bocharov. Modelling the Dynamics of LCMV Infection in Mice : Conventional and Exhaustive CTL Responses, J Theor Biol. 192(3), (1998) 283-308. [CrossRef] [PubMed] [Google Scholar]
  9. K. Boggio, G. Nicoletti, E. Di Carlo, F. Cavallo, l. Landuzzi, C. Melani, M. Giovarelli, I. Rossi, P. Nanni, C. De Giovanni, P. Bouchard, S. Wolf, A. Modesti, P. Musiani, P.L. Lollini, M.P. Colombo, G. Forni. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice, J Exp Med 188 (1998) 589-596. [CrossRef] [PubMed] [Google Scholar]
  10. F. Castiglione, F. Toschi, M. Bernaschi, S. Succi, R. Benedetti, B. Falini, A. Liso. Computational modeling of the immune response to tumor antigens : implications for vaccination, J Theo Biol, 237(4) (2005) 390-400. [CrossRef] [Google Scholar]
  11. F. Cavallo, R.A. Calogero, G. Forni. Are oncoantigens suitable targets for anti-tumour therapy ?, Nat Rev Cancer 7 (2007) 707-713. [CrossRef] [PubMed] [Google Scholar]
  12. F. Cavallo, C. De Giovanni, P. Nanni, G. Forni, P.L. Lollini. 2011 : the immune hallmarks of cancer, Cancer Immunol Immunother 60 (2011) 319-326. [CrossRef] [PubMed] [Google Scholar]
  13. F. Celada, P.E. Seiden. A computer model of cellular interaction in the immune system Immunol. Today 13, (1992) 56-62. [Google Scholar]
  14. F. Celada, P.E. Seiden. Affinity Maturation and Hypermutation in a Simulation of the Humoral Response, Eur J Immunol., 26, (1996) 1350-1358. [CrossRef] [PubMed] [Google Scholar]
  15. D. Chowdhury, D. Stauffer, P.V. Choudary. A Unified Discrete Model of Immune Response, J Theor Biol. 145, (1990) 207-215. [CrossRef] [PubMed] [Google Scholar]
  16. I.R. Cohen, H. Atlan. Network Regulation of Autoimmunity : An Automation Model, J Autoimmun., 2(5), (1989) 613-625. [CrossRef] [PubMed] [Google Scholar]
  17. C. De Giovanni, G. Nicoletti, L. Landuzzi, A. Astolfi, S. Croci, A. Comes, S. Ferrini, R. Meazza, M. Iezzi, E. Di Carlo, P. Musiani, F. Cavallo, P. Nanni, P.L. Lollini. Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12-engineered allogeneic cell vaccine, Cancer Res 64 (2004) 4001-4009. [CrossRef] [PubMed] [Google Scholar]
  18. G.P. Dunn, L.J. Old, R.D. Schreiber. The immunobiology of cancer immunosurveillance and immunoediting, Immunity 21 (2004) 137-148. [CrossRef] [PubMed] [Google Scholar]
  19. S. Feyerabend, S. Stevanovic, C. Gouttefangeas, et al. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer, Prostate, 69(9), (2009) 917-927. [CrossRef] [PubMed] [Google Scholar]
  20. O.J. Finn. Cancer immunology, N Engl J Med 358 (2008) 2704-2715. [CrossRef] [PubMed] [Google Scholar]
  21. S. Forrest, Beauchemin. Computer Immunology, Immunol Rev. 216, (2007) 176-197. [PubMed] [Google Scholar]
  22. R.A. Gatenby, P.K. Maini, E.T. Gawlinski. Analysis of tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy, Appl. Math. Letters, 15, (2002) 339-345. [CrossRef] [Google Scholar]
  23. M. Halling-Brown, F. Pappalardo, N. Rapin, P. Zhang, et al. ImmunoGrid : Towards Agent-based Simulations of the Human Immune System at a Natural Scale, Philosophical Transactions A, 368, (2010) 2799-2815. [CrossRef] [Google Scholar]
  24. M. Jílek, J. Ŝterzl. Model of Differentiation of Immunologically Competent Cell, in Developmental Aspects of Antibody Formation and Structure. (eds.), Academia, Prague, (1970) 963-981. [Google Scholar]
  25. M. Kaufman, J. Urbain, R. Thomas. Towards a Logical Analysis of the Immune Response, J Theor Biol. 114(4), (1985) 527-561. [CrossRef] [PubMed] [Google Scholar]
  26. R.M. Kedl, J.W. Kappler, P. Marrack. Epitope dominance, competition and T cell affinity maturation, Curr. Opin. Immunol. 15 (2003), 120-127. [CrossRef] [PubMed] [Google Scholar]
  27. R.M. Kedl, B.C. Schaefer, J.W. Kappler, P. Marrack. T cells down-modulate peptide-MHC complexes on APCs in vivo, Nat. Immunol. 3, (2002) 27-32. [CrossRef] [PubMed] [Google Scholar]
  28. S. Kim-Schulze, B. Taback, H.L. Kaufman. Cytokine therapy for cancer, Surgical Oncology Clinics of North America, 16(4), (2007) 793-818. [CrossRef] [PubMed] [Google Scholar]
  29. Z. Kirkali, E. T uzel.Systemic therapy of kidney cancer : tyrosine kinase inhibitors antiagiogenesis or IL-2 ?, Future Oncology, vol. 5(6), (2009) 871-888. [CrossRef] [Google Scholar]
  30. P. Klenerman, R.M. Zinkernagel. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes, Nature 394, (1998) 482-485. [CrossRef] [PubMed] [Google Scholar]
  31. S. Koido, E. Hara, S. Homma, et al. Cancer vaccine by fusions of dendritic and cancer cells, Clinical and Developmental Immunology, 2009 (657369) (2009). [Google Scholar]
  32. C.A. Kruse, L. Cepeda, B. Owens, S.D. Johnson, J. Stears, K.O. Lillehei. Treatment of recurrent glioma with intracav- itary alloreactive cytotoxic T lymphocytes and interleukin-2, Cancer Immunology Immunotherapy, 45(2), (1997) 77-87. [CrossRef] [Google Scholar]
  33. Ha Youn Lee, D.J. Topham, Sung Yong Park, J. Hollenbaugh, et al. Simulation and Prediction of the Adaptive Immune Response to Influenza A Virus Infection, Journal of Virology, 83(14), (2009) 7151-7165. [CrossRef] [PubMed] [Google Scholar]
  34. S. Liang, K. Mozdzanowska, G. Palladino, W. Gerhard. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity, J. Immunol. 152, (1994) 1653-1661. [PubMed] [Google Scholar]
  35. A. Lin, A. Schildknecht, L.T. Nguyen, P.S. Ohashi. Dendritic cells integrate signals from the tumor micro-environment to modulate immunity and tumor growth, Immunology Letters, 127(2), (2010) 77-84. [CrossRef] [PubMed] [Google Scholar]
  36. J.F. Lynch,. A Logical Characterization of Individual-Based Models, 23rd Annual IEEE Symposium on Logic in Computer Science, (2008) 379-390. [Google Scholar]
  37. P.-L. Lollini, F. Cavallo, P. Nanni, G. Forni. Vaccines for tumour prevention, Nat. Rev. Cancer, 6, (2006) 204-216. [CrossRef] [PubMed] [Google Scholar]
  38. P.L. Lollini, G. Nicoletti, L. Landuzzi, F. Cavallo, G. Forni, C. De Giovanni, P. Nanni. Vaccines and other immunological approaches for cancer immunoprevention, Curr Drug Targets (2010) Epub ahead of print. [Google Scholar]
  39. Y. Louzoun. The evolution of mathematical immunology, Immunological Reviews, 216, (2007) 9-20. [PubMed] [Google Scholar]
  40. P. Manneville and Al. Cellular Automata and Modeling of Complex Physical Systems, Springer Verlag Series in Physics. 46, (1989). [Google Scholar]
  41. A. Mantovani, P. Allavena, A. Sica, F. Balkwill. Cancer- related inflammation, Nature, 454(7203), (2008) 436-444. [CrossRef] [PubMed] [Google Scholar]
  42. D.F. McDermott. Immunotherapy of metastatic renal cell carcinoma, Cancer, 115(10), (2009) 2298-2305. [CrossRef] [PubMed] [Google Scholar]
  43. M. MezÂťard, G. Parisi, M. Virasoro. Spin Glass Theory and Beyond, World Scientific, Singapore (1988). [Google Scholar]
  44. S. Motta, F. Castiglione, P.-L. PLollini, F. Pappalardo. Modelling Vaccination Schedules for a Cancer Immunoprevention Vaccine, Immunome Research, 1 :5, (2005) doi :10.1186/1745-7580-1-5. [Google Scholar]
  45. P. Nanni, G. Nicoletti, C. De Giovanni, L. Landuzzi, E. Di Carlo, F. Cavallo, S.M. Pupa, I. Rossi, M.P. Colombo, C. Ricci, A. Astolfi, P. Musiani, G. Forni, P.L. Lollini. Combined allogeneic tumor cell vaccination and systemi interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice, J Exp Med 194 (2001) 1195-1205. [CrossRef] [PubMed] [Google Scholar]
  46. P. Nanni, L. Landuzzi, G. Nicoletti, C. De Giovanni, I. Rossi, S. Croci, A. Astolfi, M. Iezzi, E. Di Carlo, P. Musiani, G. Forni, P.L. Lollini. Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent, J Immunol 173 (2004) 2288-2296. [PubMed] [Google Scholar]
  47. P. Nanni, G. Nicoletti, A. Palladini, S. Croci, A. Murgo, A. Antognoli, L. Landuzzi, M. Fabbi, S. Ferrini, P. Musiani, M. Iezzi, C. De Giovanni, P.L. Lollini. Antimetastatic activity of a preventive cancer vaccine, Cancer Res., 67(22), (2007) 11037-11044. [CrossRef] [PubMed] [Google Scholar]
  48. A.U. Neumann. Control of the Immune Response by a Threshold Automata Model on A Lattice, Physica A : Statistical Mechanics and Its Applications, 162, (1989) 1-19. [CrossRef] [Google Scholar]
  49. L. Novellino, C. Castelli, G. Parmiani. A listing of human tumor antigens recognized by T cells, Cancer Immunol Immunother 54 (2005) 187-207. [CrossRef] [PubMed] [Google Scholar]
  50. M.J. Palmowski, E.M. Choi, I.F. Hermans, S.C. Gilbert, J.L. Chen, U. Gileadi, M. Salio, A. Van Pel, S. Man, E. Bonin, P. Liljestrom, P.R. Dunbar, V. Cerundolo. Competition between CTL narrows the immune response induced by prime-boost vaccination protocols, J Immunol. 168, (2002) 4391-4398. [PubMed] [Google Scholar]
  51. A. Palladini, G. Nicoletti, F. Pappalardo, A. Murgo, V. Grosso, V. Stivani, M.L. Ianzano, A. Antognoli, S. Croci, L. Landuzzi, C. De Giovanni, P. Nanni, S. Motta, P.-L. Lollini. In silico modeling and in vivo efficacy of cancer preventive vaccinations, Cancer Research, 70(20), (2010) 7755-7763. [Google Scholar]
  52. F. Pappalardo, F. Castiglione, P.-L. Lollini, S. Motta. Modelling and Simulation of Cancer Immunoprevention Vaccine, Bioinformatics, 21 :12, (2005) 2891-2897. [CrossRef] [PubMed] [Google Scholar]
  53. F. Pappalardo, S. Motta, P.-L. Lollini, E. Mastriani. Analysis of vaccine’s schedules using models, Cellular Immunology, 244, (2006) 137-140. [CrossRef] [PubMed] [Google Scholar]
  54. F. Pappalardo, M.D. Halling-Brown, N. Rapin, P. Zhang, et al. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design, and optimization, Briefings in Bioinformatics, 10: 3, (2009) 330-340. [CrossRef] [PubMed] [Google Scholar]
  55. F. Pappalardo, M. Pennisi, F. Castiglione, S. Motta. Vaccine protocols optimization : in silico experiences, Biotechnology Advances, 28, (2010) 82-93. [CrossRef] [PubMed] [Google Scholar]
  56. F. 1 Pappalardo, I.M. Forero, M. Pennisi, A. Palazon, I. Melero, S. Motta. SimB16 : modeling the combined anti-tumor effects of anti-CD137 monoclonal antibodies and adoptive T cell therapy against a mouse melanoma model, BMC Cancer, submitted, (2011). [Google Scholar]
  57. C.R. Parish. Cancer immunotherapy : the past, the present and the future, Immunology and Cell Biology, 81(2), (2003) 106-113. [CrossRef] [PubMed] [Google Scholar]
  58. M. Pennisi, F. Pappalardo, A. Palladini, G. Nicoletti, P.Nanni, P.-L. Lollini, S. Motta. Modeling the competition between lung metastases and the immune system using agents, BMC Bioinformatics, 11(Suppl 7) :S13, (2010) doi :10.1186/1471-2105-11-S7-S13. [Google Scholar]
  59. M. Pennisi, C.Bianca, F. Pappalardo, S. Motta. Modeling artificial immunity against mammary carcinoma, Proceedings of the 10th International Conference on Mathematical Methods in Science and Engineering (CMMSE 2010), ISBN 978- 84-613-5510-5, (2010) 753-756. [Google Scholar]
  60. M. Pennisi, C. Bianca, F. Pappalardo, S. Motta. Compartmental mathematical modeling of immune system - melanoma competition, Proceedings of the 10th International Conference on Mathematical Methods in Science and Engineering (CMMSE 2011), ISBN 978-84-614-6167-7, (2011) 930-934. [Google Scholar]
  61. A.S. Perelson, G. Weisbuch. Immunology for physicists. Reviews of Moddern Physics, 69, (1997) 1219-1267. [Google Scholar]
  62. A.M. Smith, A.S. Perelson. Influenza A virus infection kinetics : quantitative data and models, WIREs Syst Biol Med, 3(4), (2011) 429-445. [CrossRef] [Google Scholar]
  63. H. Van Poppel, S. Joniau, S.W. Van Gool. Vaccine therapy in patients with renal cell carcinoma, European Urology, 55(6), (2009) 1333-1344. [CrossRef] [PubMed] [Google Scholar]
  64. J. Rice, S. Buchan, F. Stevenson. Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen, J. Immunol. 169, (2002) 3908-3913. [PubMed] [Google Scholar]
  65. S.A. Rosenberg. Progress in human tumour immunology and immunotherapy, Nature, 411(6835), (2001) 380-384. [CrossRef] [PubMed] [Google Scholar]
  66. S.A. Rosenberg, J.C. Yang, N.P. Restifo. Cancer immunotherapy : moving beyond current vaccines, Nat Med 10 (2004) 909-915. [Google Scholar]
  67. E. Sercarz, A.H. Coons. The Exhaustion of Specific Antibody Producing Capacity During A Secondary Response, In Mechanisms of Immunological Tolerance Conference. (eds.), Academia Prague, (1962) 78-83. [Google Scholar]
  68. H.B. Sieburg. A Logical Dynamic Systems Approach to the Regulation of Antigen-Driven Lymphocyte Stimulation, in Theoretical Immunology : Part I. A. S. Perelson (eds.), (1992) 273-293. [Google Scholar]
  69. D.J. Slamon, W. Godolphin, L.A. Jones, J.A. Holt, S.G. Wong, D.E. Keith, W.J. Levin, S.G. Stuart, J. Udove, A. Ullrich. Studies of the HER-2/neu protooncogene in human breast and ovarian cancer, Science 244 (1989) 707-712. [CrossRef] [PubMed] [Google Scholar]
  70. A.L. Smith, M.E Wikstrom, B. Fazekas de St Groth,. Visualizing T cell competition for peptide/MHC complexes : a specific mechanism to minimize the effect of precursor frequency, Immunity 13, (2000) 783-794. [CrossRef] [PubMed] [Google Scholar]
  71. D. Stauffer, R. Pandey. Immunologically Motivated Simulations of Cellular Automata, Computers in Physics. 6(4), (1992) 404. [Google Scholar]
  72. J. Ŝterzl. Factors Determining the Differentiation Pathways of Immunocompetent Cells, Cold Spring Harb Symp Quant Biol. 32, (1967) 493-506. [CrossRef] [Google Scholar]
  73. B. Stockinger, T. Barthlott, G. Kassiotis. T cell regulation : a special job or everyone’s responsibility ?, Nat. Immunol. 2, (2001) 757-758. [CrossRef] [PubMed] [Google Scholar]
  74. J. Ursini-Siegel, B. Schade, R.D. Cardiff, W.J. Muller. Insights from transgenic mouse models of ERBB2-induced breast cancer, Nat Rev Cancer 7 (2007) 389-397. [CrossRef] [PubMed] [Google Scholar]
  75. K.E. de Visser, E. Eichten, L.M. Coussens. Paradoxical roles of the immune system during cancer development, Nature Reviews Cancer, 6(1), (2006) 24-37. [CrossRef] [PubMed] [Google Scholar]
  76. L.M. Weiner, R. Surana, S. Wang. Monoclonal anti- bodies : versatile platforms for cancer immunotherapy, Nature Reviews Immunology, 10(5), (2010) 317-327. [CrossRef] [PubMed] [Google Scholar]
  77. G. Weisbuch, H. Atlan. Control of the Immune Response, Journal of Physics A : Mathematical and General. 21, (1988) L189-L192. [CrossRef] [Google Scholar]
  78. S. Wolfram. Theory and Applications of Cellular Automata, Redwood City, CA : Addison-Wesley (1986). [Google Scholar]
  79. J.W. Yewdell, J.R. Bennink. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses, Annu. Rev. Immunol. 17, (1999) 51-88. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.