Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Epidemiology
Page(s) 168 - 185
DOI https://doi.org/10.1051/mmnp/20127311
Published online 06 June 2012
  1. Adimurthi, S. Mishra, G.-D. Veerappa Gowda. Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients. J. Differential Equations, 241 (2007), No. 1, 1–31. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Aguilar, L. Lévi, M. Madaune-Tort. Nonlinear multidimensional parabolic-hyperbolic equations. Proceedings of the 2006 International Conference in honor of Jacqueline Fleckinger, Electron. J. Differ. Equ. Conf., 16 (2007), 15–28. [Google Scholar]
  3. A. Ambrosetti, A. Malchiodi. Nonlinear analysis and semilinear elliptic problems. Cambridge University Press, Cambridge, 2007. [Google Scholar]
  4. B. Andreianov, K. H. Karlsen, N. H. Risebro. A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal., 201 (2011), No. 1, 27–86. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bardonnet, V. Bolliet, V. Belon. Recruitment abundance estimation : Role of glass eel (anguilla anguilla l.) response to light. Journal of Experimental Marine Biology and Ecology, 321 (2005), No. 2, 181–190. [CrossRef] [Google Scholar]
  6. C. Bardos. Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels ; théorèmes d’approximation ; application à l’équation de transport. Ann. Sci. École Norm. Sup., 3 (1970), 185–233. [Google Scholar]
  7. M. Bendahmane, K. H. Karlsen. Anisotropic doubly nonlinear degenerate parabolic equations. Proceedings of ENUMATH 2005 : Numerical mathematics and advanced applications, Springer, (2006), 381–386. [Google Scholar]
  8. S. Berres, R. Bürger, H. Frid. Neumann problems for quasi-linear parabolic systems modeling polydisperse suspensions. SIAM J. Math. Anal., 38 (2006), No. 2, 557–573. [CrossRef] [MathSciNet] [Google Scholar]
  9. V. Bolliet, P. Lambert, J. Rives, A. Bardonnet. Rhythmic swimming activity in anguilla anguilla glass eels : Synchronisation to water current reversal under laboratory conditions. Journal of Experimental Marine Biology and Ecology, 344 (2007), No. 1, 54–66. [CrossRef] [Google Scholar]
  10. J. Carrillo. Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147 (1999), No. 4, 269–361. [CrossRef] [MathSciNet] [Google Scholar]
  11. G.-Q. Chen, K. H. Karlsen. L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Amer. Math. Soc., 358 (2006), No. 3, 937–963. [CrossRef] [MathSciNet] [Google Scholar]
  12. G.-Q. Chen, B. Perthame. What is ... a kinetic solution for degenerate parabolic-hyperbolic equations ? Notices Amer. Math. Soc., 57 (2010), No. 6, 737–739. [MathSciNet] [Google Scholar]
  13. R. Dautray, J.-L. Lions. Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, 1988. [Google Scholar]
  14. M. de Casamajor, P. Prouzet, P. Lazure. Identification des flux de civelles (anguilla anguilla) à partir des relations d’allométrie en fonction des conditions hydrodynamiques de l’estuaire de l’Adour. Aquatic Living Resources, 13 (2001), No. 6, 411–420. [CrossRef] [EDP Sciences] [Google Scholar]
  15. J. Donea, A. Huerta, J.-P. Ponthot, A. Rodríguez-Ferra. Arbitrary Lagrangian- Eulerian methods in Encyclopedia of computational mechanics, Vol. 1. John Wiley & Sons Ltd., Chichester, 2004. [Google Scholar]
  16. J. Droniou. Non-coercive linear elliptic problems. Potential Anal., 17 (2002), No. 2, 181–203. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Gagneux, M. Madaune-Tort. Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière, Springer-Verlag, Berlin, 1996. [Google Scholar]
  18. F. Gastaldi, A. Quarteroni, G. Sacchi Landriani. Coupling of two-dimensional hyperbolic and elliptic equations. Comput. Methods Appl. Mech. Engrg., 80 (1990), No. 1-3, 347–354. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. Gastaldi, L. Gastaldi. On a domain decomposition for the transport equation : theory and finite element approximation. IMA J. Numer. Anal., 14 (1994), No. 1, 111–135. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Gilbarg, N.-S. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 2001. [Google Scholar]
  21. J. Jimenez, L. Lévi. A mathematical analysis for some class of hyperbolic-parabolic problems. Adv. Math. Sci. Appl., 20 (2010), No. 1, 51–75. [MathSciNet] [Google Scholar]
  22. S.-N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (1970), No. 123, 228–255. [MathSciNet] [Google Scholar]
  23. J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969. [Google Scholar]
  24. J.-L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications I. Dunod, Paris, 1968. [Google Scholar]
  25. M. Odunlami. "GlassEel2D“. A software to simulate glass eel behavior in estuaries, University of Pau, https://redmine.univ-pau.fr/projects/glasseel2D, 2011. [Google Scholar]
  26. O. Pardo. Contribution à l’étude et à la modélisation d’un modèle de convection-diffusion dégénéré : application à l’étude du comportement migratoire des civelles dans l’estuaire de l’Adour. PhD thesis, Université de Pau, 2002. [Google Scholar]
  27. P. Prouzet and EELIAD partners. Personal communications. IFREMER and http://www.eeliad.com/, 2009-2012. [Google Scholar]
  28. P. Prouzet, M. Odunlami, E. Duquesne, A. Boussouar. Analysis and visualization of the glass eel behavior ( anguilla anguilla) in the adour estuary and estimate of its upstream migration speed. Aquatic Living Resources, 22 (2009), 525–534. [CrossRef] [EDP Sciences] [Google Scholar]
  29. J.-E. Roberts, J.-M. Thomas. Mixed and hybrid methods. In Handbook of numerical analysis II. North-Holland, Amsterdam, 1991. [Google Scholar]
  30. G. Vallet, P. Wittbold. On a stochastic first-order hyperbolic equation in a bounded domain. Infinite Dimensional Analysis QuantumProbability, 12 (2009), No. 4, 1–39. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.