Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Epidemiology
Page(s) 147 - 167
DOI https://doi.org/10.1051/mmnp/20127310
Published online 06 June 2012
  1. O. O. Aalen. Effects of frailty in survival analysis. Statistical Methods in Medical Research, 3 (1994), No. 3, 227. [CrossRef] [PubMed] [Google Scholar]
  2. O. O. Aalen, Ø. Borgan, H. K. Gjessing. Survival and event history analysis : a process point of view. Springer Verlag, 2008. [Google Scholar]
  3. A. S. Ackleh. Estimation of rate distributions in generalized Kolmogorov community models. Non-Linear Analysis, 33 (1998), No. 7, 729–745. [Google Scholar]
  4. A. S. Ackleh, D. F. Marshall, H. E. Heatherly. Extinction in a generalized Lotka – Volterra predator–prey model. Journal of Applied Mathematics and Stochastic Analysis, 13 (2000), No. 3, 287–297. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. S. Ackleh, D. F. Marshall, H. E. Heatherly, B. G. Fitzpatrick. Survival of the fittest in a generalized logistic model. Mathematical Models and Methods in Applied Sciences, 9 (1999), No. 9, 1379–1391. [Google Scholar]
  6. R. M. Anderson, R. M. C. May. Infectious diseases of humans : Dynamics and control. Oxford University Press, New York, 1991. [Google Scholar]
  7. H. Andersson and T. Britton. Stochastic epidemic models and their statistical analysis. Springer Verlag, 2000. [Google Scholar]
  8. V. Andreasen. The final size of an epidemic and its relation to the basic reproduction number. Bulletin of Mathematical Biology, (2011) in press. [Google Scholar]
  9. F. Ball. Deterministic and stochastic epidemics with several kinds of susceptibles. Advances in Applied Probability, 17 (1985), No. 1, 1–22. [CrossRef] [Google Scholar]
  10. F. Ball and D. Clancy. The final size and severity of a generalised stochastic multitype epidemic model. Advances in Applied Probability, 25 (1993), No. 4, 721–736. [Google Scholar]
  11. S. Bansal, B. T. Grenfell, and L. A. Meyers. When individual behaviour matters : homogeneous and network models in epidemiology. Journal of Royal Sosciety Interface, 4 (2007), No. 16, 879–891. [Google Scholar]
  12. F. S. Berezovskaya, A. S. Novozhilov, G. P. Karev. Population models with singular equilibrium. Mathematical Biosciences, 208 (2007), No. 1, 270–299. [Google Scholar]
  13. B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet. Stability of differential susceptibility and infectivity epidemic models. Journal of Mathematical Biology, 62 (2011), No. 1, 39–64. [Google Scholar]
  14. R. D. Boylan. A note on epidemics in heterogeneous populations. Mathematical Biosciences, 105 (1991), No. 1, 133–137. [CrossRef] [PubMed] [Google Scholar]
  15. A. S. Bratus, A. S. Novozhilov, Platonov A. P. Dynamical systems and models in biology. Fizmatlit, 2010. [Google Scholar]
  16. F. A. B. Coutinho, E. Massad, L. F. Lopez, M. N. Burattini, C. J. Struchiner, R. S. Azevedo-Neto. Modelling heterogeneities in individual frailties in epidemic models. Mathematical and Computer Modelling, 30 (1999), No. 1, 97–115. [CrossRef] [Google Scholar]
  17. L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts, J. V. Ross, M. C. Vernon. Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 28 (2011). [Google Scholar]
  18. A. M. De Roos, L. Persson. Unstructured population models : Do population-level assumptions yield general theory ? In K. Cuddington and B. Beisner, editors, Ecological paradigms lost : Routes of theory change, pages 31–62. Academic Press, 2005. [Google Scholar]
  19. O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases : Model building, analysis and interpretation, John Wiley, 2000. [Google Scholar]
  20. O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28 (1990), No. 4, 365–382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz. The legacy of Kermack and McKendrick. In D. Mollison, editor, Epidemic models : Their structure and relation to data, 95–115. Cambridge University Press, 1995. [Google Scholar]
  22. M.A. Duffy, L. Sivars-Becker. Rapid evolution and ecological host–parasite dynamics. Ecology Letters, 10 (2007), No. 1, 44–53. [Google Scholar]
  23. J. Dushoff. Host heterogeneity and disease endemicity : A moment-based approach. Theoretical Population Biology, 56 (1999), No. 3, 325–335. [CrossRef] [PubMed] [Google Scholar]
  24. G. Dwyer, J. Dushoff, J. S. Elkinton, J. P. Burand, S. A. Levin. Variation in susceptibility : Lessons from an insect virus. In U. Diekmann, H. Metz, M. Sabelis, and K. Sigmund, editors, Adaptive dynamics of infectious diseases : In pursuit of virulence management, 74–84. Cambridge Univercity Press, 2002. [Google Scholar]
  25. G. Dwyer, J. Dushoff, J. S. Elkinton, S. A. Levin. Pathogen-driven outbreaks in forest defoliators revisited : Building models from experimental data. The American Naturalist, 156 (2000), No. 2, 105–120. [CrossRef] [PubMed] [Google Scholar]
  26. G. Dwyer, J. S. Elkinton, J. P. Buonaccorsi. Host heterogeneity in susceptibility and disease dynamics : Tests of a mathematical model. The American Naturalist, 150 (1997), No. 6, 685–707. [CrossRef] [PubMed] [Google Scholar]
  27. J. J. Gart. The statistical analysis of chain-binomial epidemic models with several kinds of susceptibles. Biometrics, 28 (1972), No. 4, 921–930. [CrossRef] [PubMed] [Google Scholar]
  28. A. N. Gorban. Selection theorem for systems with inheritance. Mathematical Modelling of Natural Phenomena, 2 (2007), No. 4, 1–45. [Google Scholar]
  29. A. N. Gorban. Self-simplification in Darwin’s systems. In A. N. Gorban and D. Roose, editors, Coping with complexity : Model reduction and data analysis, pages 311–340. Springer Verlag, 2010. [Google Scholar]
  30. A. Hastings. Unstructured models in ecology : past, present, and future. In K. Cuddington and B. E. Beisner, editors, Ecological paradigms lost : Routes of theory change, pages 9–30. Academic Press, 2005. [Google Scholar]
  31. J. A. P. Heesterbeek. The law of mass-action in epidemiology : a historical perspective. In K. Cuddington and B. E. Beisner, editors, Ecological paradigms lost : Routes of theory change, pages 81–104. Academic Press, 2005. [Google Scholar]
  32. S. Hsu Schmitz. Effects of genetic heterogeneity on HIV transmission in homosexual populations. In C. Castillo-Chavez, editor, Mathematical approaches for emerging and reemerging infectious diseases : Models, methods, and theory, pages 245–260. IMA, 2002. [Google Scholar]
  33. J. M. Hyman, J. Li. Differential susceptibility epidemic models. Journal of Mathematical Biology, 50 (2005), No. 6, 626–644. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  34. G. P. Karev. Heterogeneity effects in population dynamics. Doklady Mathematics, 62 (2000), No. 1, 141–144. [Google Scholar]
  35. G. P. Karev. Inhomogeneous models of tree stand self-thinning. Ecological Modelling, 160 (2003), No. 1-2, 23–37. [Google Scholar]
  36. G. P. Karev. Dynamics of inhomogeneous populations and global demography models. Journal of Biological Systems, 13 (2005), No. 1, 83–104. [Google Scholar]
  37. G. P. Karev. On mathematical theory of selection : continuous time population dynamics. Journal of Mathematical Biology, 60 (2010), No. 1, 107–129. [Google Scholar]
  38. G. P. Karev. Replicator equations and the principle of minimal production of information. Bulletin of Mathematical Biology, 72 (2010), No. 5, 1124–1142. [Google Scholar]
  39. G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya. On the asymptotic behavior of the solutions to the replicator equation. Mathematical Medicine and Biology, 28 (2011), No. 2, 89–110. [Google Scholar]
  40. G. P. Karev, A. S. Novozhilov, E. V. Koonin. Mathematical modeling of tumor therapy with oncolytic viruses : Effects of parametric heterogeneity on cell dynamics. Biology Direct, 1 (2006), No. 30, 19. [CrossRef] [PubMed] [Google Scholar]
  41. G. Katriel. The size of epidemics in populations with heterogeneous susceptibility. Journal of Mathematical Biology, (2011), in press. [Google Scholar]
  42. M. J. Keeling, P. Rohani. Modeling infectious diseases in humans and animals. Princeton University Press, 2008. [Google Scholar]
  43. W. O. Kermack, A. G. McKendrick. A Contribution to themathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, 115 (1927), No. 772, 700–721. [Google Scholar]
  44. W. M. Liu, H. W. Hethcote, S. A. Levin. Dynamical behavior of epidemiological models with nonlinear incidence rates. Journal of Mathematical Biology, 25 (1987), No. 4, 359–380. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  45. W. M. Liu, S. A. Levin, Y. Iwasa. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. Journal of Mathematical Biology, 23 (1986), No. 2, 187–204. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  46. R. M. May, R. M. Anderson. The transmission dynamics of human immunodeficiency virus. Proceedings of the Royal Society of London. Series B : Biological Sciences, 321 (1988), 565–607. [Google Scholar]
  47. H. McCallum, N. Barlow, J. Hone. How should pathogen transmission be modelled ? Trends in Ecology & Evolution, 16 (2001), No. 6, 295–300. [CrossRef] [PubMed] [Google Scholar]
  48. L.A. Meyers. Contact network epidemiology : Bond percolation applied to infectious disease prediction and control. Bulletin of American Mathematical Society, 44 (2007), 63–86. [Google Scholar]
  49. M. Nikolaou, V. H. Tam. A New Modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations. Journal of Mathematical Biology, 52 (2006), No. 2, 154–182. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. A. S. Novozhilov. Analysis of a generalized population predator–prey model with a parameter distributed normally over the individuals in the predator population. Journal of Computer and System Sciences International, 43 (2004), No. 3, 378–382. [Google Scholar]
  51. A. S. Novozhilov. On the spread of epidemics in a closed heterogeneous population. Mathematical Biosciences, 215 (2008), No. 2, 177–185. [Google Scholar]
  52. A. S. Novozhilov. Heterogeneous Susceptibles–Infectives model : Mechanistic derivation of the power law transmission function. Dynamics of Continuous, Discrete and Impulsive Systems (Series A, Mathematical Analysis), 16 (2009), No. S1, 136–140. [MathSciNet] [Google Scholar]
  53. A. S. Novozhilov. On the stochastic SIR model with heterogeneous susceptibility. (2012), in preparation. [Google Scholar]
  54. A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin, G. P. Karev. Mathematical modeling of tumor therapy with oncolytic viruses : Regimes with complete tumor elimination within the framework of deterministic models. Biology Direct, 1 (2006), No. 6, 18. [CrossRef] [PubMed] [Google Scholar]
  55. P. Rodrigues, A. Margheri, C. Rebelo, M. G. M. Gomes. Heterogeneity in susceptibility to infection can explain high reinfection rates. Journal of Theoretical Biology, 259 (2009), No. 2, 280–290. [CrossRef] [PubMed] [Google Scholar]
  56. M. Roy, M. Pascual. On representing network heterogeneities in the incidence rate of simple epidemic models. Ecological Complexity, 3 (2006), No. 1, 80–90. [Google Scholar]
  57. G. Scalia-Tomba. Asymptotic final size distribution of the multitype reed- frost process. Journal of Applied Probability, 23 (1986), No. 3, 563–584. [CrossRef] [Google Scholar]
  58. N. C. Severo. Generalizations of some stochastic epidemic models. Mathematical Biosciences, 4 (1969), 395–402. [CrossRef] [Google Scholar]
  59. P. D. Stroud, S. J. Sydoriak, J. M. Riese, J. P. Smith, S. M. Mniszewski, P. R. Romero. Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing. Mathematical Biosciences, 203 (2006), No. 2, 301–318. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  60. V. M. Veliov. On the effect of population heterogeneity on dynamics of epidemic diseases. Journal of Mathematical Biology, 51 (2005), No. 2, 123–143. [Google Scholar]
  61. E. B. Wilson, J. Worcester. The law of mass action in epidemiology. Proceedings of the National Academy of Sciences of the USA, 31 (1945), No. 1, 24–34. [CrossRef] [Google Scholar]
  62. E. B. Wilson, J. Worcester. The law of mass action in epidemiology, II. Proceedings of the National Academy of Sciences of the USA, 31 (1945), No. 4, 109–116. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.