Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Page(s) 117 - 146
Published online 06 June 2012
  1. Global tuberculosis report. Geneva : World Health Organization ; Available from : [accessed 25 March 2011], 2010. [Google Scholar]
  2. C. Dye, B.G. Williams. The population dynamics and control of tuberculosis. Science 328 (2010), 856–861. [CrossRef] [PubMed] [Google Scholar]
  3. K. Lönnroth, K.G. Castro, J.M. Chakaya, L.S. Chauhan, K. Floyd. Tuberculosis control and elimination 2010–50 : cure, care, and social development. Lancet 375 (2010), 1814-1829. [CrossRef] [PubMed] [Google Scholar]
  4. J. Stephenson. TB progress slowing. JAMA 299 (2008), 1764-1771, doi : 10.1001/jama.299.15.1764-b. [Google Scholar]
  5. The World Health Report, Diabetes, Fact sheet N0 312,, Jan. 2011. [Google Scholar]
  6. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 32 (2008), 62–67. [Google Scholar]
  7. Diabetes atlas. Brussels, International Diabetes Federation ; Available from : 2010, [accessed 25 March 2011]. [Google Scholar]
  8. C. Dye. Global epidemiology of tuberculosis. Lancet 367 (2006), 938–940, doi :10.1016/S0140-6736(06)68384-0 PMID :16546542. [CrossRef] [PubMed] [Google Scholar]
  9. P.N. Oscarsson, H. Silwer. Incidence of pulmonary tuberculosis among diabetics. Acta Med. Scand. 335 (1958), 23–48. [Google Scholar]
  10. H.F. Root. The association of diabetes and tuberculosis. N. Engl. J. Med. 210 (1934), 1–13. doi :10.1056/NEJM193401042100101. [CrossRef] [Google Scholar]
  11. S.J. Kim, Y.P. Hong, W.J. Lew, S.C. Yang, E.G. Lee. Incidence of pulmonary tuberculosis among diabetics. Tuber. Lung Dis. 76 (1995), 529–533. doi :10.1016/0962-8479(95)90529-4 PMID :8593374. [CrossRef] [PubMed] [Google Scholar]
  12. M.A. Mori, G. Leonardson, T.K. Welty. The benefits of isoniazid chemoprophylaxis and risk factors for tuberculosis among Oglala Sioux Indians. Arch. Intern. Med. 152 (1992), 547–50, doi :10.1001/archinte.152.3.547 PMID :1546917 [CrossRef] [PubMed] [Google Scholar]
  13. F. Mugusi, A.B. Swai, K.G. Alberti, D.G. McLarty. Increased prevalence of diabetes mellitus in patients with pulmonary tuberculosis in Tanzania. Tubercle 71 (1990), 271–276, doi :10.1016/0041-3879(90)90040-F PMID :2267680 [CrossRef] [PubMed] [Google Scholar]
  14. A. Pablos-Mèndez, J. Blustein, C.A. Knirsch. The role of diabetes mellitus in the higher prevalence of tuberculosis among Hispanics. Am J Public Health 87 (1997), 574–579, doi :10.2105/AJPH.87.4.574 PMID :9146434 [CrossRef] [PubMed] [Google Scholar]
  15. C.Y. Jeon, M.B. Murray. Diabetes mellitus increases the risk of active tuberculosis : a systematic review of 13 observational studies. PLoS Med 5 (2008), 152. doi :10.1371/journal.pmed.0050152 PMID :18630984 [CrossRef] [Google Scholar]
  16. I.B. Restrepo, A.J. Camerlin, M.H. Rahbar, W. Wang, M.A. Restrepo, I. Zarate, F. Mora-Guzmán, J. G. Crespo-Solis, J. Briggs, J. B. McCormicka, S. P. Fisher-Hocha. Cross-sectional assessment reveals high diabetes prevalence among newly-diagnosed tuberculosis cases. Bull. World Health. Organ. 89 (2011), 352–359, doi :10.2471/BLT.10.085738 359 . [CrossRef] [PubMed] [Google Scholar]
  17. M.M. McMahon, R.B. Bistrian. Host defenses and susceptibility to infection in patients with diabetes mellitus. Infect. Dis. Clin. North Am. 9 (1995), 1-10. [PubMed] [Google Scholar]
  18. H. Koziel, M.J. Koziel. Pulmonary complications of diabetes mellitus. Infect. Dis. Clin. North Am. 9 (1995), 67–72. [Google Scholar]
  19. K. Tsukaguchi, H. Okamura, M. Ikuno. The relation between diabetes mellitus and IFN-gamma, IL-12 and IL-IO production by CD4+ T cells and monocytcs in patients with pulmonary tuberculosis. Kekkaku, 72 (1997), 617–628. [PubMed] [Google Scholar]
  20. M.A. Karuchunskn, V. Gcrgcrt, O.B. Lakovlcva. Specific features of cellular immunity of pulmonary tuberculosis in patients with diabetes mellitus. Problem Tnberk, 6 (1997), 59–63. [Google Scholar]
  21. C.T. Yu, C.H. Wang, T.J. Huang. Relation of bronchoalvcolar lavagc T lymphocyte subpopulations to rate of regression of active pulmonary tuberculosis. Thorux 50 (1995), 86–93. [Google Scholar]
  22. A. Guptan, A. Shah. Tuberculosis and diabetes : An appraisa. Ind. J. Tub. 47 (2000), 3–12. [Google Scholar]
  23. C.R. Stevenson, N.G. Forouhi, G.C. Rogli, B.G. Williams, J.A. Lauer, C. Dye, N. Unwin. Diabetes and tuberculosis : the impact of the diabetes epidemic on tuberculosis incidence. BMC Public Health 7 (2007), 234-242, doi :10.1186/1471-2458-7-234. [CrossRef] [PubMed] [Google Scholar]
  24. M.B. Murray, C.Y. Jeon. Diabetes mellitus increases the risk of active tuberculosis : A systematic review of 13 observational studies. PLoS Medicine 5 (2008), 7–15, e152.doi :10.1371/journal.pmed.0050152. [CrossRef] [Google Scholar]
  25. C. Dye, B. Bourdin Trunz, K Lönnroth, G. Roglic, B.G. Williams. Nutrition, diabetes and tuberculosis in the epidemiological transition. PLoS One, 6(6) : e21161., 2011, doi : 10.1371/journal.pone.0021161 [CrossRef] [PubMed] [Google Scholar]
  26. K.E. Dooley, R.E. Chaisson. Tuberculosis and diabetes mellitus : convergence of two epidemics. Lancet Infect. Dis. 9 (2009), 737–46. [CrossRef] [PubMed] [Google Scholar]
  27. C. Castillo-Chavez, B. Song. Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1 (2004), 361–404. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  28. C.P. Bhunu, W. Garira, Z. Mukandavire, M. Zimba. Tuberculosis transmission model with chemoprophylaxis and treatment. Bull. Math. Biol. 70 (2008), 1163–1191. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. T. Cohen, C. Colijn, B. Finklea, M. Murray. Exogenous re-infection and the dynamics of tuberculosis epidemics : local effects in a network model of transmission. J. R. Soc. Interface 4 (2007), 523–531. [CrossRef] [PubMed] [Google Scholar]
  30. S. Bowong, J.J. Tewa. Mathematical analysis of a tuberculosis model with differential infectivity. Com. Nonl. Sci. Num. Sim. 14 (2009), 4010–4021. [CrossRef] [Google Scholar]
  31. Z. Feng, C.C. Chavez, A. F. Capurro. A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57 (2000), 235–247. [CrossRef] [PubMed] [Google Scholar]
  32. B.M. Murphy, B.H. Singer, S. Anderson, S. Kirschner. Comparing epidemic tuberculosis in demographically distinct heterogeneous populations. Math. Biosci. 180 (2002), 161–185. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. R.W. Shafer, S.P. Singh, C. Larkin, P.M. Small. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in an immunocompetent patient. Tuberc. Lung Dis. 76 (1995), 575–577. [CrossRef] [Google Scholar]
  34. K. Styblo, J. Meijer, I. Sutherland. The transmission of tubercle bacilli : its trend in a human population. Bull. Int. Union Tuberc. 42 (1969), 5–104. [Google Scholar]
  35. National Institute of Statistics, Evolution des systèmes statistiques nationaux, expérience du Cameroun, in The National Institute of Statistics report, J. Tedou (ed). New-York, (2010), 1–18. [Google Scholar]
  36. National Comittee of Fight Against Tuberculosis, Guide du personnel de la santé, in The Ministry of Public Health report, Ministére de la Santé Publique (ed), Yaoundé-Cameroon : CEPER Press (2010), 1–110. [Google Scholar]
  37. N. Bacaër, R. Ouifki, C. Pretorius, R. Wood, B. Williams. Modeling the joint epidemics of TB and HIV in a South African township. J. Math. Biol. 57 (2008), 557–593, DOI 10.1007/s00285-008-0177-z. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  38. C. Dye, B.G. William. Criteria for the control of drug resistant tuberculosis. Proc. Natl. Acad. Sci. USA 97 (2000), 8180–8185. [CrossRef] [Google Scholar]
  39. T. Cohen, M. Murray, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness, Nature Publishing Group,, (2004). [Google Scholar]
  40. G. Birkhoff, G.C. Rota, Ordinary Differential Equations. 4th edition, John Wiley and Sons, Inc., New York., 1989. [Google Scholar]
  41. A. Berman, R.J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM., 1994. [Google Scholar]
  42. J.A. Jacquez, C.P. Simon. Qualitative theory of compartmental systems. SIAM Rev. 35 (1993), 43–79. [Google Scholar]
  43. P. van den Driessche, J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Bios. 180 (2002), 29–28. [CrossRef] [Google Scholar]
  44. C. Castillo-Chavez, Z. Feng, D. Xu, On the computation of ℛ0 and its role on global stability., 2002. [Google Scholar]
  45. J. Carr, Applications Centre Manifold theory. Springer-Verlag, New York, 1981. [Google Scholar]
  46. O. Sharomi, A.B. Gumel. Curtailing smoking dynamics : a mathematical modeling approach. Appl. Math. Comput. 19 (2008), 475–499. [CrossRef] [Google Scholar]
  47. N. Chitnis, J.M. Hyman, J.M. Cushing. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70 (2008), 1272–1296. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  48. C.R. Stevenson, J.A. Critchley, N.G. Forouhi, G. Roglic, B.G. Williams. Diabetes and the risk of tuberculosis : a neglected threat to public health ? Chronic Illness 3 (2007), 228–245, [CrossRef] [PubMed] [Google Scholar]
  49. C.K.W. Gavin Koh, W.J. Wiersinga. Tuberculosis and Diabetes Mellitus : Convergence of Two Epidemics : F1000 Ranking : “Changes Clinical Behavior”. Lancet Infect. Dis. 9 (2009), 737–46. [CrossRef] [PubMed] [Google Scholar]
  50. C. Dye, B.B. Trunz, K. Lonnroth, G. Roglic, B.G. Williams. Nutrition, Diabetes and Tuberculosis in the Epidemiological Transition. PLoS ONE 6(6) : e21161. doi :10.1371/journal.pone.0021161. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.