Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Epidemiology
Page(s) 99 - 116
DOI https://doi.org/10.1051/mmnp/20127308
Published online 06 June 2012
  1. E. Allen. Modeling with Itô Stochastic Differential Equations. Springer, The Netherlands, 2007. [Google Scholar]
  2. L. J. S. Allen. An Introduction to Stochastic Processes with Applications to Biology. Pearson Eduction Inc., New Jercy, 2003. [Google Scholar]
  3. L. J. S. Allen, M. A. Jones, C. F. Martin. A discrete-time model with vaccination for a measles epidemic. Math. Biosci., 105 (1991), 111–131. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. O. Arino, A. El. Abdllaoui, J. Mikram, J. Chattopadhyay. Infection on prey population may act as a biological control in ratio-dependent predator-prey model. Nonlinearity, 17 (2004), 1101-1116. [CrossRef] [Google Scholar]
  5. E. J. Allen, L. J. S. Allen, A. Arciniega, P. Greenwood. Construction of equivalent stochastic differential equation models. Stoch. Anal. Appl., 26 (2008) 274-297. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. G. Ball. Stochastic and deterministic models for SIS epidemics among a population partitioned into households. Math. Biosci., 156 (1999) 41–67. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. E. Beltrami, T. O. Carroll. Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol., 32 (1994) 857-863. [CrossRef] [Google Scholar]
  8. F. Brauer, C. Castillo-Chàvez. Mathematical Models in Population Biolgy and Epidemiology Springer-Verlag, New York, 2001. [Google Scholar]
  9. T. Britton. Stochastic epidemic models : A survey. Math. Biosci., 225 (2010) 24–35. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. T. Britton, D. Lindenstrand. Epidemic modelling : Aspects where stochasticity matters. Math. Biosci., 222 (2009) 109-116. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. J. Chattopadhyay, N. Bairagi. Pelicans at risk in Salton Sea - an eco-epidemiological model. Ecol. Model., 136 (2001) 103–112. [CrossRef] [Google Scholar]
  12. M. S. Chan, V. S. Isham. A stochastic model of schistosomiasis immuno-epidemiology. Math. Biosci., 151 (1998) 179–198. [CrossRef] [PubMed] [Google Scholar]
  13. H. I. Freedman. A model of predator-prey dynamics as modified by the action of parasite. Math. Biosci., 99 (1990) 143–155. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. T. C. Gard. Introduction to Stochastic Differential Equations. Marcel Decker, New York, 1987. [Google Scholar]
  15. C. W. Gardiner. Handbook of Stochastic Methods. Springer-Verlag, New York, 1983. [Google Scholar]
  16. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phy., 22 (1976) 403–434. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. D. T. Gillespie. The chemical Langevin equation. J. Chem. Phy., 113 (2000) 297–306. [NASA ADS] [CrossRef] [Google Scholar]
  18. N. S. Goel, N. Richter-Dyn. Stochastic Models in Biology. Academic Press, New York, 1974. [Google Scholar]
  19. D. Greenhalgh, M. Griffiths. Backward bifurcation, equilibrium and stability phenomena in a three-stage extended BRSV epidemic model. J. Math. Biol., 59 (2009) 1–36. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. K. P. Hadeler, H. I. Freedman. Predator-prey population with parasitic infection. J. Math. Biol., 27 (1989) 609–631. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. M. Haque, D. Greenhalgh. A predator-prey model with disease in prey species only. M2AS, 30 (2006) 911–929. [Google Scholar]
  22. D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43 (2001) 525–546. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. W. O. Kermack, A. G. McKendrick. A Contribution to the Mathematical Theory of Epidemics. Proc. Roy. Soc. Lond. A. 115 (1927) 700–721. [CrossRef] [Google Scholar]
  24. P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations. Springer, Berlin, 1999. [Google Scholar]
  25. M. Kot. Elements of Mathematical Biology. Cambridge University Press, Cambridge, 2001. [Google Scholar]
  26. Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, Berlin, 1997. [Google Scholar]
  27. A. J. Lotka. Elements of physical biology. Williams & Wilkins Co., Baltimore, 1925. [Google Scholar]
  28. J. Marsden, M. McCracken. The Hopf Bifurcation and its Applications. Springer, New York, 1976. [Google Scholar]
  29. H. Malchow, S. V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology : Theory, Models and Simulations. Chapman & Hall, London, 2008. [Google Scholar]
  30. J. D. Murray. Mathematical Biology. Springer, New York, 1993. [Google Scholar]
  31. R. J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley & Sons, New York, 1980. [Google Scholar]
  32. D. Stiefs, E. Venturino, U. Feudel. Evidence of chaos in eco-epidemic models. Math. Biosci. Eng., 6 (2009) 857–873. [CrossRef] [MathSciNet] [Google Scholar]
  33. R. K. Upadhyay, N. Bairagi, K. Kundu, J. Chattopadhyay. Chaos in eco-epidemiological problem of the Salton Sea and its possible control. Appl. Math. Comput., 196 (2008) 392–401. [CrossRef] [Google Scholar]
  34. E. Venturino. The influence of diseases on Lotka-Volterra systems. Rocky Mountain Journal of Mathematics. 24 (1994) 381–402. [CrossRef] [MathSciNet] [Google Scholar]
  35. E. Venturino. Epidemics in predator-prey models : disease in the prey, In ‘Mathematical Population Dynamics, Analysis of Heterogeneity’. 1, O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds), Wnertz Publisher Ltd, Canada, 381–393, 1995. [Google Scholar]
  36. V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. 2. Mem. R. Accad. Naz. dei Lincei. Ser. VI, 1926. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.