Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Epidemiology
Page(s) 204 - 226
DOI https://doi.org/10.1051/mmnp/20127313
Published online 06 June 2012
  1. L. Amo, I. Galván, G. Tomás, J.J. Sanz, Predator odour recognition and avoidance in a songbird. Functional Ecology, 22 (2008), 289-293. doi :10.1111/j.1365-2435.2007.01361.x [CrossRef] [Google Scholar]
  2. R.M. Anderson, R.M. May, Infectious Diseases of Humans : Dynamics and Control. Oxford University Press, Oxford, 1992. [Google Scholar]
  3. R. Antia, V.V. Ganusov, R. Ahmed, The role of models in understanding CD8+ T - Cell memory, Nature Reviews Immunology, 5 (2005), 101–111. [CrossRef] [PubMed] [Google Scholar]
  4. B. Appelbe, D. Flynn, H. McNamara, J.P. O’Kane, A. Pimenov, A. Pokrovskii, D. Rachinskii, A. Zhezherun, Rate-independent hysteresis in terrestrial hydrology, A Vegetated Soil Model with Preisach Hysteresis. IEEE Control Systems Magazine, 1 (2009), 44–69. [CrossRef] [Google Scholar]
  5. B. Appelbe, D. Rachinskii, A. Zhezherun, Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Physica B, 403 (2008), No. 2–3, 301–304. [CrossRef] [Google Scholar]
  6. N.T. Bailey, The Mathematical Theory of Infectious Diseases (2-nd edition). Charles Griffin and Co. Ltd., 1975. [Google Scholar]
  7. P.B. Banks, C.R. Dickman, Alien predation and the effects of multiple levels of prey naivete. Trends Ecol. Evol., 22 (2007), No. 5, 229–230. [CrossRef] [PubMed] [Google Scholar]
  8. C. Barnard, Animal Behaviour - Mechanism, Development, Function and Evolution. Pearson/ Prentice Hall, London, 2004. [Google Scholar]
  9. J.J. Bolhuis, C.D.L. Wynne, Can evolution explain how minds work ?. Nature, 458 (2009), 832–833. [CrossRef] [PubMed] [Google Scholar]
  10. J.J. Bolhuis, E.M. Macphail, A critique of the neuroecology of learning and memory. Trends Cogn. Sci., 5 (2001), 426–433. [CrossRef] [PubMed] [Google Scholar]
  11. M. Brokate, A. Pokrovskii, D. Rachinskii, Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis. J. Math. Anal. Appl., 319 (2006), No. 1, 94–109. [CrossRef] [Google Scholar]
  12. M. Brokate, A. Pokrovskii, D. Rachinskii, O. Rasskazov, Differential equations with hysteresis via a canonical example. in The Science of Hysteresis (Bertotti and Mayergoyz, editors). Vol. 1, pp. 125–291, Elsevier Science, 2005. ISBN : 978-0-12-480874-4 [Google Scholar]
  13. M. Brokate, J. Sprekels, Hysteresis and Phase Transitions. Springer, New York, 1996. [Google Scholar]
  14. V. Capasso, Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics, Vol. 97. Springer-Verlag, Heidelberg, 1993. [Google Scholar]
  15. C.F. Clancy, M.J.A. O’Callaghan, T.C. Kelly, A multi-scale problem arising in a model of avian flu virus in a seabird colony. J. Phys. Conf. Ser., 55 (2006), 45-54. [CrossRef] [Google Scholar]
  16. D. Clayton, The influence of parasites on host-sexual selection, Parasitology Today, 7 (1991), 329-334 [CrossRef] [Google Scholar]
  17. N.S. Clayton, D.P. Griffiths, N.J. Emery, A. Dickinson, Elements of episodic memory in animals, Phil. Trans. R. Soc. Lond B, 356 (2001), 1483–1491. [CrossRef] [Google Scholar]
  18. T.S. Collett, M. Collett, Memory use in insect visual navigation, Nature Reviews Neuroscience, 3 (2002), 542–552. [CrossRef] [PubMed] [Google Scholar]
  19. J.M. Cornelius, C.W. Breuner, T.P. Hahn, Under a neighbour’s influence : public information affects stress hormones and behaviour of a songbird. Proc. R. Soc. B, 277 (2010), 2399–2404. doi : 10.1098/rspb.2010.0164 [CrossRef] [Google Scholar]
  20. J.G. Cox and S.L. Lima, Naivete and an aquatic — terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol., 21 (2006), No. 12, 674–680. [CrossRef] [PubMed] [Google Scholar]
  21. R. Cross, H. McNamara, A. Pokrovskii, Modelling macroeconomic flows related to large ensembles of elementary exchange operations. Physica B, 403 (2008), 451–455. [CrossRef] [Google Scholar]
  22. R. Cross, H. McNamara, A.V. Pokrovskii, D. Rachinskii, A new paradigm for modelling hysteresis in macroeconomic flows. Physica B, 403 (2007), 2–3, 231–236. [CrossRef] [Google Scholar]
  23. E. Danchin, L-A. Giraldeau, T.J. Valone, R.H. Wagner, Public Information : From Nosy Neighbours to Cultural Evolution. Science, 305 (2006), 487–491. [CrossRef] [Google Scholar]
  24. Mark Davis, Invasion Biology. Oxford University Press, 2009. [Google Scholar]
  25. F.B.M. De Waal, Darwin’s last laugh. Nature, 460 (2009), 175. [CrossRef] [PubMed] [Google Scholar]
  26. W. Deng, J.B. Aimone, F.H. Gage, New neurons and new memories : how does adult hippocampal neurogenesis affect learning and memory. Nature Reviews Neuroscience, 11 (2010), 229–233. [CrossRef] [Google Scholar]
  27. N.J. Emery, N.S. Clayton, Effects of experience and social context of prospective caching strategies in scrub jays. Nature, 414 (2004), 443–446. [CrossRef] [Google Scholar]
  28. N.J. Emery, J. Dally, N.S. Clayton, Western scrub jays (Aphelocoma californica) use cognitive strategies to protect their caches from thieving conspecifics. Animal Cognition, 7 (2004), 37–43. [CrossRef] [PubMed] [Google Scholar]
  29. D.H. Everett, W.I. Whitton, A general approach to hysteresis. Transactions of the Faraday Society, 48 (1952), 749–757. [CrossRef] [Google Scholar]
  30. J.A. Ewing, Experimental research in magnetism. Trans. R. Soc. Lond., 176 (1895), II. [Google Scholar]
  31. N.M. Ferguson, C.A. Donnelly, R.M. Anderson, The Foot-and-Mouth Epidemic in Great Britain : Pattern of Spread and Impact of Interventions. Science, 292 (2001), No. 5519, 1155–1160. [CrossRef] [PubMed] [Google Scholar]
  32. D. Flynn, O. Rasskazov, On the integration of an ODE involving the derivative of a Preisach nonlinearity. J. Phys. Conf. Ser., 22 (2005), 43–55. doi :10.1088/1742-6596/22/1/003 [CrossRef] [Google Scholar]
  33. P. Forterre, The origin of viruses and their possible role in major evolutionary transitions. Virus Research, 117 (2006), 5–16. [CrossRef] [PubMed] [Google Scholar]
  34. C. Fraser, C.A. Donnelly, S. Cauchemez, W.P. Hanage, M.D.T. Van Kerkhove, D. Hollingsworth, J. Griffin, R.F. Baggaley, H.E. Jenkins, E.J. Lyons, T. Jombart, W.R. Hinsley, N.C. Grassly, F. Balloux, A.C. Ghani, N.M. Ferguson, A. Rambaut, O.G. Pybus, H. Lopez-Gatell, C.M. Alpuche-Aranda, Ietza Bojorquez Chapela, E.P. Zavala, Dulce Ma. Espejo Guevara, F. Checchi, E. Garcia, S. Hugonnet, C. Roth : The WHO Rapid Pandemic Assessment Collaboration. Pandemic Potential of a Strain of Influenza A (H1N1) : Early Findings. Science, 324 (2009), 1557–1561. [CrossRef] [PubMed] [Google Scholar]
  35. N. Goldenfeld, C. Woese, Biology’s next revolution. Nature, 445 (2007), 369. [CrossRef] [PubMed] [Google Scholar]
  36. W.D. Hamilton, M. Zuk, Heritable true fitness and bright birds : a role for parasites ?. Science, 218 (1982), 384-387. [CrossRef] [PubMed] [Google Scholar]
  37. R. Hampton, S.D. Healy, S.J. Shettlewort, A. Kamil, Neurecologists are not made of straw. Trends Cogn. Sci., 6 (2002), 1–2. [CrossRef] [PubMed] [Google Scholar]
  38. R.D. Hawkins, E. Kandel, C.B. Bailey, Molecular mechanisms of memory storage in Aplysia, Biological Bulletin, 210 (2006), 174–191. [CrossRef] [Google Scholar]
  39. S.D. Healy, S.R. de Kort, N.S. Clayton, The Hippocampus, spatial memory and food hoarding : a puzzle revisited. Trends Ecol. Evol., 20 (2005), 17–22. [CrossRef] [PubMed] [Google Scholar]
  40. J.M. Heffernan, R.J. Smith, L.M. Wahl, Perspectives on the basic reproductive ratio. J. R. Soc. Interface, 2 (2005), No. 4, 281-93. doi :10.1098/rsif.2005.0042 [CrossRef] [PubMed] [Google Scholar]
  41. J.M. Hyman, J. Li, Differential susceptibility epidemic models. J. Math. Biol., 50 (2005), No. 62, 626–644. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  42. L.V. Kalachev, T.C. Kelly, M.J. O’Callaghan, A.V. Pokrovskii, A.A. Pokrovskiy, Analysis of threshold-type behaviour in mathematical models of the intrusion of a novel macroparasite in a host colony. Math. Med. Biol., 28 (2011), No. 4, 287-333. doi : 10.1093/imammb/dqq013 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  43. E. Kandel, The Molecular Biology of Memory Storage : A Dialogue between Genes and Synapses. Science, 294 (2001), 1030–1038. [CrossRef] [PubMed] [Google Scholar]
  44. M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton, 2008. [Google Scholar]
  45. W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115 (1927), 700–721. [CrossRef] [Google Scholar]
  46. E.V. Koonin, Darwinian Evolution in the Light of Genomics. Nucleic Acids Research, 37 (2009), 1011–1034. [CrossRef] [PubMed] [Google Scholar]
  47. E.V. Koonin, Y.I. Wolf, Genomics of Bacteria and Archaea; the Emerging Dynamic View of the Prokaryotic World. Nucleic Acids Research, 36 (2008), 6688–6719. [CrossRef] [PubMed] [Google Scholar]
  48. A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol., 68 (2006), 615–626. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  49. A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol., 69 (2007), 1871–1886. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate. Math. Med. Biol., 26 (2009), No. 3, 225–239. [CrossRef] [PubMed] [Google Scholar]
  51. A. Korobeinikov, Stability of ecosystem : global properties of a general predator-prey model. Math. Med. Biol., 26 (2009), 309–321. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  52. A. Korobeinikov, Global properties of a general predator-prey model with non-symmetric attack and consumption rate. Discrete Cont. Dyn.-B, 14 (2010), No. 3, 1095–1103. [CrossRef] [Google Scholar]
  53. A. Korobeinikov, P.K. Maini, Nonlinear incidence and stability of infectious disease models. Math. Med. Biol., 22 (2005), 113–128. [CrossRef] [PubMed] [Google Scholar]
  54. M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis. Nauka, Moscow, 1983 (English edition : Springer, 1989). [Google Scholar]
  55. P. Krejci, P. O’Kane, A. Pokrovskii, D. Rachinskii, Properties of solutions to a class of differential models incorporating Preisach hysteresis operator. Physica D, in press,(2011). doi :10.1016/j.physd.2011.05.005 [Google Scholar]
  56. P. Krejci, P. O’Kane, A. Pokrovskii, D. Rachinskii, Stability results for a soil model with singular hysteretic hydrology. 5th International Workshop on Multi-Rate Processes and Hysteresis (MURPHYS 2010) IOP Publishing, J. Phys. Conf. Ser. 268 (2011) 012016 doi :10.1088/1742-6596/268/1/012016 [Google Scholar]
  57. J. Levenson, J.D. Sweatt, Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6 (2005), 105–117. [CrossRef] [PubMed] [Google Scholar]
  58. M. Lipsitch, T. Cohen, B. Cooper, J.M. Robins, S. Ma, L. James, G. Gopalakrishna, S.K. Chew, C.C. Tan, M.H. Samore, D. Fisman, M. Murray, Transmission Dynamics and Control of Severe Acute Respiratory Syndrome. Science, 300 (2003), No. 5627, 1966-1970. [CrossRef] [PubMed] [Google Scholar]
  59. E.M. Macphail, J. Bolhuis, The evolution of intelligence : adaptive specialisations versus general process. Biological Reviews, 76 (2001), 341–364. [CrossRef] [Google Scholar]
  60. J.S. Mattick, M.F. Mehler, RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci., 31 (2008), 227–233. [CrossRef] [PubMed] [Google Scholar]
  61. I.D. Mayergoyz, Mathematical Models for Hysteresis. Springer, New York, 1991. [Google Scholar]
  62. I.D. Mayergoyz, Mathematical Models of Hysteresis And Their Applications. Elsevier, 2003. [Google Scholar]
  63. R. Menzel, U. Greggers, A. Smith, S. Berger, S. Brandt, G. Bundrock, T. Plumpe, F. Schaupp, S. Silke, J. Stindt, N. Stollhoff, S. Watzl, Honey bees navigate according to a map-like memory. Proceedings of the National Academy of Sciences, 102 (2006), 3040–3045. [CrossRef] [Google Scholar]
  64. L. Neel, Theories des lois d’aimantation de Lord Rayleigh 1, 2. Cahiers de Physique, 12 (1942), 1–20 ; 13 (1943), 19–30. [Google Scholar]
  65. T. Piersma, J.A. van Gils, The Flexible Phenotype A Body - Centered Integration of Ecology, Physiology and Behaviour. Oxford University Press, 2011. [Google Scholar]
  66. A. Pimenov, Stability and bifurcations of systems with hysteresis and multistable systems. Ph.D. dissertation, University College Cork, Ireland, 2009. [Google Scholar]
  67. A. Pimenov, D. Rachinskii, Linear Stability Analysis of Systems with Preisach Memory. Discrete Cont. Dyn.-B, 4 (2009), 997–1018. [CrossRef] [Google Scholar]
  68. P. Preisach, Uber die magnetische Nachwirkung. Zeitschrift für Physik, 94 (1935), 277–302. [CrossRef] [Google Scholar]
  69. A. Rodriguez, M. Hausberger, P. Clergeau, Flexibility in European starlings’ use of social information : experiments with decoys in different populations. Animal Behaviour, 80 (2010), 965-97. doi :10.1016/ j.anbehav. 2010.08.010 [CrossRef] [Google Scholar]
  70. The Science of Hysteresis (Bertotti and Mayergoyz, editors). Vol. 1-3, 125–291, Elsevier Science, 2005. ISBN : 978-0-12-480874-4. [Google Scholar]
  71. E. Tulving, Episodic Memory : From Mind to Brain. Ann. Rev. Psychology, 53 (2002), 1–25. [CrossRef] [PubMed] [Google Scholar]
  72. J.J. Templeton, Luc-Alain Giraldea, Vicarious sampling : the use of personal and public information by starlings foraging in a simple patchy environment. Behav Ecol Sociobiol, 38 (1996), 105-114. [CrossRef] [Google Scholar]
  73. A. Visintin, Differential Models of Hysteresis. Springer, Berlin, 1994. [Google Scholar]
  74. R.H. Wagner, E. Danchin, A taxonomy of biological information. Oikos, 119 (2010), 203–209. doi : 10.1111/j.1600-0706.2009.17315.x [CrossRef] [Google Scholar]
  75. M.P. Ward, Habitat selection by dispersing yellow-headed blackbirds : evidence of prospecting and the use of public information. Oecologia, 145 (2005), 650–657. doi : 10.1007/s00442-005-0179-0 [CrossRef] [PubMed] [Google Scholar]
  76. M. Wonham, M. Lewis, J. Renclawowicz, P. van den Driessche, Transmission assumptions generate conflicting predictions in host-vector disease models : a case study in West Nile virus. Ecology Letters, 9 (2006), 706–725. [CrossRef] [PubMed] [Google Scholar]
  77. X. Yu, T. Tsibane, P.A. McGraw, F.S. House, C.J. Keefer, M.D. Hicar, T.M. Tumpey, C. Pappas, L.A. Perrone, O. Martinez, J. Stevens, I.A. Wilson, P.V. Aguilar, E.L. Altschuler, C.F. Basler, J.E. Crowe Jr, Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature, 445 (2008), 532–536. [CrossRef] [Google Scholar]
  78. M. Zanetti, G. Franchini, T cell memory and protective immunity by vaccination : is more better ?. Trends Immunol., 27 (2005), 511–517. [CrossRef] [Google Scholar]
  79. C. Zhao, W. Deng, F.W. Gage, Mechanisms and Functional Implications of Adult Neurogenesis. Cell, 132 (2008), 645–660. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.