Free Access
Issue
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Epidemiology
Page(s) 227 - 252
DOI https://doi.org/10.1051/mmnp/20127314
Published online 06 June 2012
  1. A. Agresti, Exact inference for categorical data : Recent advances and continuing controversies, Statist. Med. 20 (2001), 2709–2722. [CrossRef] [Google Scholar]
  2. A. Agresti, Categorical data analysis, Wiley, 2002. [Google Scholar]
  3. H. Aurtrup, Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response, Mutat Res 464 (2000), 65–76. [PubMed] [Google Scholar]
  4. N. Beerenwinkel, L. Pachter, B. Sturmfels, S.F. Elena, R.E. Lenski, Analysis of epistatic interactions and fitness landscapes using a new geometric approach., BMC Evol Biol. 13 (2007), 7 :60. [CrossRef] [Google Scholar]
  5. S.P. Cleary, M. Cotterchio, E. Shi, S. Gallinger, P. Harper, Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk, Am. J. Epidemiol. 172 (2010), no. 9, 1000–1014. [CrossRef] [PubMed] [Google Scholar]
  6. H.J. Cordell, Detecting gene-gene interactions that underlie human diseases, Nat Rev Genet, 10 (2009), 392–404. [CrossRef] [PubMed] [Google Scholar]
  7. D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1992. [Google Scholar]
  8. A.C. Davison, D.V. Hinkley, Bootstrap methods and their applications, Cambridge University Press, Cambridge, 1997. [Google Scholar]
  9. P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist., 26 (1998), 363–397. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Drton, S. Sullivant, Algebraic statistical model, Statist. Sinica., 17 (2007), 1273–1297. [MathSciNet] [Google Scholar]
  11. F. Dudbridge, A. Gusnanto, B.P.C. Koeleman, Detecting multiple associations in genome-wide studies, Human Genomics, 2 (2006), 310–317. [PubMed] [Google Scholar]
  12. F. Dudbridge, B.P.C. Koeleman, Efficient computation of signifcance levels for multiple associations in large studies of correlated data, including genomewide association studies, Am. J. Hum. Genet, 75 (2004), 424–435. [CrossRef] [PubMed] [Google Scholar]
  13. E.S. Edgington, Randomization tests (3rd ed.), Marcel Dekker, New York, 1995. [Google Scholar]
  14. B. Efron, The jackknife, the bootstrap and other resampling plans, Society of Industrial and Applied Mathematics CBMS-NFS Monographs, vol. 38, Capital City Press, Philadelphia, 1982. [Google Scholar]
  15. L. Fan, J.O. Fuss, Q.J. Cheng, A.S. Arvai, M. Hammel, V.A. Roberts, P.K. Cooper, J.A. Tainer, XPD helicase structures and activities : insights into the cancer and aging phenotypes from xpd mutations., Cell, 133 (2008), 789–800. [CrossRef] [PubMed] [Google Scholar]
  16. C. Fassino, M.L. Torrente, Simple approximate varieties for sets of empirical points, Submitted. Available at http://arxiv.org/abs/1008.0274 [Google Scholar]
  17. I.O. Filiz, X. Guo, J. Morton, B. Sturmfels, Graphical models for correlated defaults, Available at http://arxiv.org/pdf/0809.1393v1.pdf, 2008. [Google Scholar]
  18. R.A. Fisher, The design of experiments, Oliver and Boyd, Edinburgh, 1935. [Google Scholar]
  19. W. Fulton, Introduction to toric varieties, Princeton University Press, 1993. [Google Scholar]
  20. P. Good, Resampling methods : A practical guide to data analysis (3rd edition), Birchäuser, Boston, 2006. [Google Scholar]
  21. H. Gorji, N Shahbazi, P. Habibollahi, S.M. Tavangar, A. Firooz, M.H. Ghahremani, The glutathione-S-transferase P1 polymorphisms correlates with changes in expression of TP53 tumor suppressor in cutaneous basal cell carcinoma, Dermatol Sci 56 (2009), 208–10. [Google Scholar]
  22. L.W. Hahn, M.D. Ritchie, J.H. Moore, Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions, Bioinformatics, 19 (2003), 376–382. [CrossRef] [PubMed] [Google Scholar]
  23. I. Hallgrimsdottir, B Sturmfels, Resultants in genetic linkage analysis, Journal of Symbolic Computation, 41 (2006), 125–137. [CrossRef] [MathSciNet] [Google Scholar]
  24. D.Y. Lin, An efficient monte carlo approach to assessing statistical significance in genomic studies, Bioinformatics, 21 (2005), 781–787. [CrossRef] [PubMed] [Google Scholar]
  25. H.W. Lo, L. Stephenson, X. Cao, M. Milas, R. Pollock, F. Ali-Osman, Identification and functional characterization of the human glutathione S-transferaseP1 gene as a novel transcriptional target of the p53 tumor suppressor gene., Mol Cancer Res, 6 (2008), 843–50. [CrossRef] [PubMed] [Google Scholar]
  26. A.S. Malaspinas, C. Uhler, Detecting epistases via markov bases, Journal of Algebraic Statistics, 2 (2011), no. 1, 36–53. [Google Scholar]
  27. M. Manuguerra, G. Matullo, F. Veglia, H. Autrup, A.M. Dunning, S. Garte, E. Gormally, C. Malaveille, S. Guarrera, S. Polidoro, F. Saletta, M. Peluso, L. Airoldi, K. Overvad, O. Raaschou-Nielsen, F. Clavel-Chapelon, J. Linseisen, H. Boeing, D. Trichopoulos, A. Kalandidi, D. Palli, V. Krogh, R. Tumino, S. Panico, H.B. Bueno-De Mesquita, P.H. Peeters, E. Lund, G. Pera, C. Martinez, P. Amiano, A. Barricarte, M.J. Tormo, J.R. Quiros, G. Berglund, L. Janzon, B. Jarvholm, N.E. Day, N.E. Allen, R. Saracci, R. Kaaks, P. Ferrari, E. Riboli, P. Vineis, Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions, Carcinogenesis, 28(2) (2007), 414–22. [CrossRef] [PubMed] [Google Scholar]
  28. T. Martone, P. Vineis, C. Malaveille, B. Terracini, Impact of polymorphisms in xeno(endo)biotic metabolism on pattern and frequency of p53 mutations in bladder cancer., Mutat Res, 462 (2000), 303–9. [CrossRef] [PubMed] [Google Scholar]
  29. G. Matullo, A.M. Dunning, S. Guarrera, C. Baynes, S. Polidoro, S. Garte, H. Autrup, C. Malaveille, M. Peluso, L. Airoldi, F. Veglia, E. Gormally, G. Hoek, M. Krzyzanowski, K. Overvad, O. Raaschou-Nielsen, F. Clavel-Chapelon, J. Linseisen, H. Boeing, A. Trichopoulou, D. Palli, V. Krogh, R. Tumino, S. Panico, H.B. Bueno-De Mesquita, P.H. Peeters, E. Lund, G. Pera, C. Martinez, M. Dorronsoro, A. Barricarte, M.J. Tormo, J.R. Quiros, N.E. Day, T.J. Key, R. Saracci, R. Kaaks, E. Riboli, P. Vineis, DNA repair polymorphisms and cancer risk in non-smokers in a cohort study, Carcinogenesis, 27(5) (2006), 997–1007. [CrossRef] [PubMed] [Google Scholar]
  30. Y. Meng, Q. Ma, Y. Yu, J. Farrell, L.A. Farrer, M.A. Wilcox, Multifactor-dimensionality reduction versus family-based association tests in detecting susceptibility loci in discordant sib-pair studies., BMC Genet, 30(6) (2005), S146. [CrossRef] [Google Scholar]
  31. J. Molitor, M. Papathomas, M Jerrett, and S. Richardson, Bayesian profile regression with an application to the national survey of children’s health., Biostatistics, 11 (2010), 484–498. [CrossRef] [PubMed] [Google Scholar]
  32. D.S. Moore, G. McCabe, W. Duckworth, S. Sclove, Chapter 18 :bootstrap methods and permutation tests, The Practice of Business Statistics, W.H. Freeman, New York, 2003. [Google Scholar]
  33. L. Pachter, B. Sturmfels, Parametric inference for biological sequence analysis, Proc Natl Acad Sci U S A, 101 (2004), 16138–43. [CrossRef] [PubMed] [Google Scholar]
  34. L. Pachter, B. Sturmfels, Tropical geometry of statistical models, Proc Natl Acad Sci U S A, 101 (2004), 16132–7. [CrossRef] [PubMed] [Google Scholar]
  35. M. Papathomas, J. Molitor, S. Richardson, E. Riboli, P. Vineis, Examining the joint effect of multiple risk factors using exposure risk profiles : lung cancer in nonsmokers, Environ. Health Perspect, 119 (2011), 84–91. [CrossRef] [PubMed] [Google Scholar]
  36. L. Patchter, B. Sturmfels, Algebraic statistics for computational biology, Cambridge University Press, 2005. [Google Scholar]
  37. M. Peluso, P. Hainaut, L. Airoldi, H. Autrup, A. Dunning, S. Garte, E. Gormally, C. Malaveille, G. Matullo, A. Munnia, E. Riboli, P. Vineis, Methodology of laboratory measurements in prospective studies on gene-environment interactions : the experience of GenAir, Mutat Res, 574 (2005), 92–104. [CrossRef] [PubMed] [Google Scholar]
  38. G. Pistone, E. Riccomagno, and H.P. Wynn, Algebraic statistics, Chapman and Hall/CRC, Boca Raton, 2001. [Google Scholar]
  39. F. Rapallo, Algebraic Markov bases and MCMC for two-way contingency tables, Scandinavian Journal of Statistics, 30 (2003), 385–397. [CrossRef] [MathSciNet] [Google Scholar]
  40. F. Rapallo, Algebraic exact inference for rater agreement models, Statistical Methods & Applications, 14 (2005), 45–66. [CrossRef] [Google Scholar]
  41. E. Riboli, The european prospective investigation into cancer and nutrition (EPIC) : plans and progress., J. Nutr., 131 (2001), no. 1, 170–175. [Google Scholar]
  42. T.K. Rice, N.J. Schork, D.C. Rao, Methods for handling multiple testing, Advances in Genetics, 60 (2008), 293–308. [CrossRef] [PubMed] [Google Scholar]
  43. M.D. Ritchie, L.W. Hahn, N. Roodi, L.R. Bailey, W.D. Dupont, F.F. Parl, J.H. Moore, Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer, Am. J. Hum. Genet., 69 (2001), no. 1, 138–47. [CrossRef] [PubMed] [Google Scholar]
  44. J.L. Simon, Resampling : The new statistics (2nd edition), http://bcs.whfreeman.com/pbs/, 1997. [Google Scholar]
  45. B. Sturmfels, Gröbner bases and convex polytopes, American Mathematical Society, 1996. [Google Scholar]
  46. B. Sturmfels, Solving systems of polynomial equations, American Mathematical Society, 2002. [Google Scholar]
  47. B. Sturmfels, Algebra and geometry of statistical models, Tech. report, John von Neumann Lectures, TU München, 2003. [Google Scholar]
  48. B. Sturmfels, S. Sullivant, Toric ideals of phylogenetic invariants, J Comput Biol, 12 (2005), 204–228. [CrossRef] [PubMed] [Google Scholar]
  49. P. Vineis, L. Airoldi, F. Veglia, L. Olgiati, R. Pastorelli, H. Autrup, A. Dunning, S. Garte, E. Gormally, P. Hainaut, C. Malaveille, G. Matullo, M. Peluso, K. Overvad, A. Tjonneland, F. Clavel-Chapelon, H. Boeing, V. Krogh, D. Palli, S. Panico, R. Tumino, B. Bueno-De Mesquita, P. Peeters, G. Berglund, G. Hallmans, R. Saracci, E. Riboli, Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study., BMJ 330 (2005), 277. [CrossRef] [PubMed] [Google Scholar]
  50. S. Wang, W. Xiong, W. Ma, S. Chanock, W. Jedrychowski, R. Wu, F.P. Perera, Gene-environment interactions on growth trajectories, Genetic Epidemiology (2012), doi : 10.1002/gepi.21613. [Google Scholar]
  51. R.D. Wood, Mammalian nucleotide excision repair proteins and interstrand crosslink repair, Environ Mol Mutagen, 51 (2010), 520–6. [PubMed] [Google Scholar]
  52. Y. Zhang, J.S. Liu, Bayesian inference of epistatic interactions in case-control studies., Nature Genet, 39 (2007), 1167–1173. [CrossRef] [Google Scholar]
  53. Y. Zhang, L.H. Rohde, H. Wu, Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair, Curr Genomics, 10 (2009), 250–8. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.