Free Access
Math. Model. Nat. Phenom.
Volume 7, Number 3, 2012
Page(s) 227 - 252
Published online 06 June 2012
  1. A. Agresti, Exact inference for categorical data : Recent advances and continuing controversies, Statist. Med. 20 (2001), 2709–2722. [CrossRef]
  2. A. Agresti, Categorical data analysis, Wiley, 2002.
  3. H. Aurtrup, Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response, Mutat Res 464 (2000), 65–76. [PubMed]
  4. N. Beerenwinkel, L. Pachter, B. Sturmfels, S.F. Elena, R.E. Lenski, Analysis of epistatic interactions and fitness landscapes using a new geometric approach., BMC Evol Biol. 13 (2007), 7 :60. [CrossRef]
  5. S.P. Cleary, M. Cotterchio, E. Shi, S. Gallinger, P. Harper, Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes, and colorectal cancer risk, Am. J. Epidemiol. 172 (2010), no. 9, 1000–1014. [CrossRef] [PubMed]
  6. H.J. Cordell, Detecting gene-gene interactions that underlie human diseases, Nat Rev Genet, 10 (2009), 392–404. [CrossRef] [PubMed]
  7. D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1992.
  8. A.C. Davison, D.V. Hinkley, Bootstrap methods and their applications, Cambridge University Press, Cambridge, 1997.
  9. P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist., 26 (1998), 363–397. [CrossRef] [MathSciNet]
  10. M. Drton, S. Sullivant, Algebraic statistical model, Statist. Sinica., 17 (2007), 1273–1297. [MathSciNet]
  11. F. Dudbridge, A. Gusnanto, B.P.C. Koeleman, Detecting multiple associations in genome-wide studies, Human Genomics, 2 (2006), 310–317. [PubMed]
  12. F. Dudbridge, B.P.C. Koeleman, Efficient computation of signifcance levels for multiple associations in large studies of correlated data, including genomewide association studies, Am. J. Hum. Genet, 75 (2004), 424–435. [CrossRef] [PubMed]
  13. E.S. Edgington, Randomization tests (3rd ed.), Marcel Dekker, New York, 1995.
  14. B. Efron, The jackknife, the bootstrap and other resampling plans, Society of Industrial and Applied Mathematics CBMS-NFS Monographs, vol. 38, Capital City Press, Philadelphia, 1982.
  15. L. Fan, J.O. Fuss, Q.J. Cheng, A.S. Arvai, M. Hammel, V.A. Roberts, P.K. Cooper, J.A. Tainer, XPD helicase structures and activities : insights into the cancer and aging phenotypes from xpd mutations., Cell, 133 (2008), 789–800. [CrossRef] [PubMed]
  16. C. Fassino, M.L. Torrente, Simple approximate varieties for sets of empirical points, Submitted. Available at
  17. I.O. Filiz, X. Guo, J. Morton, B. Sturmfels, Graphical models for correlated defaults, Available at, 2008.
  18. R.A. Fisher, The design of experiments, Oliver and Boyd, Edinburgh, 1935.
  19. W. Fulton, Introduction to toric varieties, Princeton University Press, 1993.
  20. P. Good, Resampling methods : A practical guide to data analysis (3rd edition), Birchäuser, Boston, 2006.
  21. H. Gorji, N Shahbazi, P. Habibollahi, S.M. Tavangar, A. Firooz, M.H. Ghahremani, The glutathione-S-transferase P1 polymorphisms correlates with changes in expression of TP53 tumor suppressor in cutaneous basal cell carcinoma, Dermatol Sci 56 (2009), 208–10.
  22. L.W. Hahn, M.D. Ritchie, J.H. Moore, Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions, Bioinformatics, 19 (2003), 376–382. [CrossRef] [PubMed]
  23. I. Hallgrimsdottir, B Sturmfels, Resultants in genetic linkage analysis, Journal of Symbolic Computation, 41 (2006), 125–137. [CrossRef] [MathSciNet]
  24. D.Y. Lin, An efficient monte carlo approach to assessing statistical significance in genomic studies, Bioinformatics, 21 (2005), 781–787. [CrossRef] [PubMed]
  25. H.W. Lo, L. Stephenson, X. Cao, M. Milas, R. Pollock, F. Ali-Osman, Identification and functional characterization of the human glutathione S-transferaseP1 gene as a novel transcriptional target of the p53 tumor suppressor gene., Mol Cancer Res, 6 (2008), 843–50. [CrossRef] [PubMed]
  26. A.S. Malaspinas, C. Uhler, Detecting epistases via markov bases, Journal of Algebraic Statistics, 2 (2011), no. 1, 36–53.
  27. M. Manuguerra, G. Matullo, F. Veglia, H. Autrup, A.M. Dunning, S. Garte, E. Gormally, C. Malaveille, S. Guarrera, S. Polidoro, F. Saletta, M. Peluso, L. Airoldi, K. Overvad, O. Raaschou-Nielsen, F. Clavel-Chapelon, J. Linseisen, H. Boeing, D. Trichopoulos, A. Kalandidi, D. Palli, V. Krogh, R. Tumino, S. Panico, H.B. Bueno-De Mesquita, P.H. Peeters, E. Lund, G. Pera, C. Martinez, P. Amiano, A. Barricarte, M.J. Tormo, J.R. Quiros, G. Berglund, L. Janzon, B. Jarvholm, N.E. Day, N.E. Allen, R. Saracci, R. Kaaks, P. Ferrari, E. Riboli, P. Vineis, Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions, Carcinogenesis, 28(2) (2007), 414–22. [CrossRef] [PubMed]
  28. T. Martone, P. Vineis, C. Malaveille, B. Terracini, Impact of polymorphisms in xeno(endo)biotic metabolism on pattern and frequency of p53 mutations in bladder cancer., Mutat Res, 462 (2000), 303–9. [CrossRef] [PubMed]
  29. G. Matullo, A.M. Dunning, S. Guarrera, C. Baynes, S. Polidoro, S. Garte, H. Autrup, C. Malaveille, M. Peluso, L. Airoldi, F. Veglia, E. Gormally, G. Hoek, M. Krzyzanowski, K. Overvad, O. Raaschou-Nielsen, F. Clavel-Chapelon, J. Linseisen, H. Boeing, A. Trichopoulou, D. Palli, V. Krogh, R. Tumino, S. Panico, H.B. Bueno-De Mesquita, P.H. Peeters, E. Lund, G. Pera, C. Martinez, M. Dorronsoro, A. Barricarte, M.J. Tormo, J.R. Quiros, N.E. Day, T.J. Key, R. Saracci, R. Kaaks, E. Riboli, P. Vineis, DNA repair polymorphisms and cancer risk in non-smokers in a cohort study, Carcinogenesis, 27(5) (2006), 997–1007. [CrossRef] [PubMed]
  30. Y. Meng, Q. Ma, Y. Yu, J. Farrell, L.A. Farrer, M.A. Wilcox, Multifactor-dimensionality reduction versus family-based association tests in detecting susceptibility loci in discordant sib-pair studies., BMC Genet, 30(6) (2005), S146. [CrossRef]
  31. J. Molitor, M. Papathomas, M Jerrett, and S. Richardson, Bayesian profile regression with an application to the national survey of children’s health., Biostatistics, 11 (2010), 484–498. [CrossRef] [PubMed]
  32. D.S. Moore, G. McCabe, W. Duckworth, S. Sclove, Chapter 18 :bootstrap methods and permutation tests, The Practice of Business Statistics, W.H. Freeman, New York, 2003.
  33. L. Pachter, B. Sturmfels, Parametric inference for biological sequence analysis, Proc Natl Acad Sci U S A, 101 (2004), 16138–43. [CrossRef] [PubMed]
  34. L. Pachter, B. Sturmfels, Tropical geometry of statistical models, Proc Natl Acad Sci U S A, 101 (2004), 16132–7. [CrossRef] [PubMed]
  35. M. Papathomas, J. Molitor, S. Richardson, E. Riboli, P. Vineis, Examining the joint effect of multiple risk factors using exposure risk profiles : lung cancer in nonsmokers, Environ. Health Perspect, 119 (2011), 84–91. [CrossRef] [PubMed]
  36. L. Patchter, B. Sturmfels, Algebraic statistics for computational biology, Cambridge University Press, 2005.
  37. M. Peluso, P. Hainaut, L. Airoldi, H. Autrup, A. Dunning, S. Garte, E. Gormally, C. Malaveille, G. Matullo, A. Munnia, E. Riboli, P. Vineis, Methodology of laboratory measurements in prospective studies on gene-environment interactions : the experience of GenAir, Mutat Res, 574 (2005), 92–104. [CrossRef] [PubMed]
  38. G. Pistone, E. Riccomagno, and H.P. Wynn, Algebraic statistics, Chapman and Hall/CRC, Boca Raton, 2001.
  39. F. Rapallo, Algebraic Markov bases and MCMC for two-way contingency tables, Scandinavian Journal of Statistics, 30 (2003), 385–397. [CrossRef] [MathSciNet]
  40. F. Rapallo, Algebraic exact inference for rater agreement models, Statistical Methods & Applications, 14 (2005), 45–66. [CrossRef]
  41. E. Riboli, The european prospective investigation into cancer and nutrition (EPIC) : plans and progress., J. Nutr., 131 (2001), no. 1, 170–175.
  42. T.K. Rice, N.J. Schork, D.C. Rao, Methods for handling multiple testing, Advances in Genetics, 60 (2008), 293–308. [CrossRef] [PubMed]
  43. M.D. Ritchie, L.W. Hahn, N. Roodi, L.R. Bailey, W.D. Dupont, F.F. Parl, J.H. Moore, Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer, Am. J. Hum. Genet., 69 (2001), no. 1, 138–47. [CrossRef] [PubMed]
  44. J.L. Simon, Resampling : The new statistics (2nd edition),, 1997.
  45. B. Sturmfels, Gröbner bases and convex polytopes, American Mathematical Society, 1996.
  46. B. Sturmfels, Solving systems of polynomial equations, American Mathematical Society, 2002.
  47. B. Sturmfels, Algebra and geometry of statistical models, Tech. report, John von Neumann Lectures, TU München, 2003.
  48. B. Sturmfels, S. Sullivant, Toric ideals of phylogenetic invariants, J Comput Biol, 12 (2005), 204–228. [CrossRef] [PubMed]
  49. P. Vineis, L. Airoldi, F. Veglia, L. Olgiati, R. Pastorelli, H. Autrup, A. Dunning, S. Garte, E. Gormally, P. Hainaut, C. Malaveille, G. Matullo, M. Peluso, K. Overvad, A. Tjonneland, F. Clavel-Chapelon, H. Boeing, V. Krogh, D. Palli, S. Panico, R. Tumino, B. Bueno-De Mesquita, P. Peeters, G. Berglund, G. Hallmans, R. Saracci, E. Riboli, Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study., BMJ 330 (2005), 277. [CrossRef] [PubMed]
  50. S. Wang, W. Xiong, W. Ma, S. Chanock, W. Jedrychowski, R. Wu, F.P. Perera, Gene-environment interactions on growth trajectories, Genetic Epidemiology (2012), doi : 10.1002/gepi.21613.
  51. R.D. Wood, Mammalian nucleotide excision repair proteins and interstrand crosslink repair, Environ Mol Mutagen, 51 (2010), 520–6. [PubMed]
  52. Y. Zhang, J.S. Liu, Bayesian inference of epistatic interactions in case-control studies., Nature Genet, 39 (2007), 1167–1173. [CrossRef]
  53. Y. Zhang, L.H. Rohde, H. Wu, Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair, Curr Genomics, 10 (2009), 250–8. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.