The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
C. N. Angstmann , I. C. Donnelly , B. I. Henry
Math. Model. Nat. Phenom., 8 2 (2013) 17-27
Published online: 2013-04-24
This article has been cited by the following article(s):
64 articles
A fractional SIS model for a random process about infectivity and recovery
Hui Chen, Jia Li and Xuewen Tan International Journal of Modern Physics C 36 (10) (2025) https://doi.org/10.1142/S0129183124420051
Individuals Strategies and Predator–Prey Game Models in Deterministic and Random Settings
Hairui Yuan, Xinzhu Meng, Federico Frascoli and Tonghua Zhang Mathematical Methods in the Applied Sciences (2025) https://doi.org/10.1002/mma.11048
Asymptotic analysis for time fractional FitzHugh-Nagumo equations
Ahmed S. Rahby and Zhanwen Yang Journal of Applied Mathematics and Computing 71 (3) 3509 (2025) https://doi.org/10.1007/s12190-024-02344-5
Fractional differentiation method: Some applications to the theory of subdiffusion-controlled reactions
Sergey D. Traytak Physical Review E 110 (4) (2024) https://doi.org/10.1103/PhysRevE.110.044145
Enrique Abad and Santos Bravo Yuste 155 (2024) https://doi.org/10.1007/978-3-031-67802-8_7
Encounter-based reaction-subdiffusion model II: partially absorbing traps and the occupation time propagator
Paul C Bressloff Journal of Physics A: Mathematical and Theoretical 56 (43) 435005 (2023) https://doi.org/10.1088/1751-8121/acfcf4
Anomalous dielectric relaxation with multispecies linear reaction dynamics
Tao Hong, Shu Peng, Yu Peng, Zhengming Tang and Kama Huang Physica A: Statistical Mechanics and its Applications 613 128511 (2023) https://doi.org/10.1016/j.physa.2023.128511
Local Stability, Global Stability, and Simulations in a Fractional Discrete Glycolysis Reaction–Diffusion Model
Tareq Hamadneh, Amel Hioual, Omar Alsayyed, Yazan Alaya AL-Khassawneh, Abdallah Al-Husban and Adel Ouannas Fractal and Fractional 7 (8) 587 (2023) https://doi.org/10.3390/fractalfract7080587
Non-Markovian Persistent Random Walk Model for Intracellular Transport
Nickolay Korabel, Hamed Al Shamsi, Alexey O. Ivanov and Sergei Fedotov Fractal and Fractional 7 (10) 758 (2023) https://doi.org/10.3390/fractalfract7100758
Numerical investigation of two models of nonlinear fractional reaction subdiffusion equations
Sheelan Osman and Trevor Langlands Fractional Calculus and Applied Analysis 25 (6) 2166 (2022) https://doi.org/10.1007/s13540-022-00096-2
Subdiffusion Equations with a Source Term and Their Extensions
Andrii Hulianytskyi Reports on Mathematical Physics 89 (1) 1 (2022) https://doi.org/10.1016/S0034-4877(22)00007-6
Anomalous Stochastic Transport of Particles with Self-Reinforcement and Mittag–Leffler Distributed Rest Times
Daniel Han, Dmitri V. Alexandrov, Anna Gavrilova and Sergei Fedotov Fractal and Fractional 5 (4) 221 (2021) https://doi.org/10.3390/fractalfract5040221
Reaction–subdiffusion equations for the A→B reaction in space- and time-dependent force fields: A study for the anomalous dielectric relaxation
Tao Hong, Yusong Hu, Zhengming Tang and Kama Huang Physica A: Statistical Mechanics and its Applications 562 125349 (2021) https://doi.org/10.1016/j.physa.2020.125349
A General Framework for Fractional Order Compartment Models
Christopher N. Angstmann, Austen M. Erickson, Bruce I. Henry, et al. SIAM Review 63 (2) 375 (2021) https://doi.org/10.1137/21M1398549
Subdiffusion of Particles with a Nonlinear Interaction and Cell-Cell Adhesion
Akram Al-Sabbagh Journal of Computational and Theoretical Transport 50 (1) 52 (2021) https://doi.org/10.1080/23324309.2020.1840395
Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications
Sean D. Lawley Physical Review E 102 (4) (2020) https://doi.org/10.1103/PhysRevE.102.042125
Anomalous reaction-diffusion equations for linear reactions
Sean D. Lawley Physical Review E 102 (3) (2020) https://doi.org/10.1103/PhysRevE.102.032117
Anomalous epidemic spreading in heterogeneous networks
H. Zhang and G. H. Li Physical Review E 102 (1) (2020) https://doi.org/10.1103/PhysRevE.102.012315
Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains
E. Abad, C. N. Angstmann, B. I. Henry, et al. Physical Review E 102 (3) (2020) https://doi.org/10.1103/PhysRevE.102.032111
Recent advances in physiologically based pharmacokinetic and pharmacodynamic models for anticancer nanomedicines
Jong Hyuk Byun, Dong-Gyun Han, Hyun-Jong Cho, In-Soo Yoon and Il Hyo Jung Archives of Pharmacal Research 43 (1) 80 (2020) https://doi.org/10.1007/s12272-020-01209-2
Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations
Christopher N. Angstmann and Bruce I. Henry Entropy 22 (9) 1035 (2020) https://doi.org/10.3390/e22091035
Numeric solution of advection–diffusion equations by a discrete time random walk scheme
Christopher N. Angstmann, Bruce I. Henry, Byron A. Jacobs and Anna V. McGann Numerical Methods for Partial Differential Equations 36 (3) 680 (2020) https://doi.org/10.1002/num.22448
Generalised Geometric Brownian Motion: Theory and Applications to Option Pricing
Viktor Stojkoski, Trifce Sandev, Lasko Basnarkov, Ljupco Kocarev and Ralf Metzler Entropy 22 (12) 1432 (2020) https://doi.org/10.3390/e22121432
An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations
S.A. Osman and T.A.M. Langlands Applied Mathematics and Computation 348 609 (2019) https://doi.org/10.1016/j.amc.2018.12.015
Bimolecular reactive transport in a two-dimensional velocity field in disordered media
Rami Ben-Zvi, Harvey Scher and Brian Berkowitz Journal of Physics A: Mathematical and Theoretical 52 (42) 424005 (2019) https://doi.org/10.1088/1751-8121/ab4077
Reaction-anomalous diffusion processes for A+B⇌C
Wen-Biao Zhang and Ming Yi Physica A: Statistical Mechanics and its Applications 527 121347 (2019) https://doi.org/10.1016/j.physa.2019.121347
Aging continuous time random walks with A → B reaction
Hong Zhang, Guo-hua Li and Bao Zhang The European Physical Journal B 92 (6) (2019) https://doi.org/10.1140/epjb/e2019-90525-0
Two dimensional diffusion-controlled triplet–triplet annihilation kinetics
Grégoire C. Gschwend, Morgan Kazmierczak, Astrid J. Olaya, Pierre-François Brevet and Hubert H. Girault Chemical Science 10 (32) 7633 (2019) https://doi.org/10.1039/C9SC00957D
Time-fractional geometric Brownian motion from continuous time random walks
C.N. Angstmann, B.I. Henry and A.V. McGann Physica A: Statistical Mechanics and its Applications 526 121002 (2019) https://doi.org/10.1016/j.physa.2019.04.238
Continuous time random walk with A→B reaction in flows
G.H. Li, H. Zhang and B. Zhang Physica A: Statistical Mechanics and its Applications 532 121917 (2019) https://doi.org/10.1016/j.physa.2019.121917
Fluid Reactive Anomalous Transport with Random Waiting Time Depending on the Preceding Jump Length
Hong Zhang and Guo-Hua Li Journal of Statistical Physics 174 (3) 548 (2019) https://doi.org/10.1007/s10955-018-2185-8
Random walk on temporal networks with lasting edges
Julien Petit, Martin Gueuning, Timoteo Carletti, Ben Lauwens and Renaud Lambiotte Physical Review E 98 (5) (2018) https://doi.org/10.1103/PhysRevE.98.052307
Reaction-subdiffusion in moving fluids
H. Zhang and G. H. Li Physical Review E 98 (4) (2018) https://doi.org/10.1103/PhysRevE.98.042132
Generalized Master Equations for Random Walks with Time-Dependent Jump Sizes
Diego Torrejon and Maria Emelianenko SIAM Journal on Applied Mathematics 78 (3) 1330 (2018) https://doi.org/10.1137/17M1127673
A continuous time random walk (CTRW) integro-differential equation with chemical interaction
Rami Ben-Zvi, Alon Nissan, Harvey Scher and Brian Berkowitz The European Physical Journal B 91 (1) (2018) https://doi.org/10.1140/epjb/e2017-80417-8
Reaction Subdiffusion with Random Waiting Time Depending on the Preceding Jump Length
Hong Zhang and Guo-Hua Li Chinese Physics Letters 35 (9) 090501 (2018) https://doi.org/10.1088/0256-307X/35/9/090501
Variable order fractional Fokker–Planck equations derived from Continuous Time Random Walks
Peter Straka Physica A: Statistical Mechanics and its Applications 503 451 (2018) https://doi.org/10.1016/j.physa.2018.03.010
Fractional Order Compartment Models
Christopher N. Angstmann, Austen M. Erickson, Bruce I. Henry, et al. SIAM Journal on Applied Mathematics 77 (2) 430 (2017) https://doi.org/10.1137/16M1069249
A time-fractional generalised advection equation from a stochastic process
C.N. Angstmann, B.I. Henry, B.A. Jacobs and A.V. McGann Chaos, Solitons & Fractals 102 175 (2017) https://doi.org/10.1016/j.chaos.2017.04.040
Non-linear continuous time random walk models
Helena Stage and Sergei Fedotov The European Physical Journal B 90 (11) (2017) https://doi.org/10.1140/epjb/e2017-80400-5
Discretization of fractional differential equations by a piecewise constant approximation
C.N. Angstmann, B.I. Henry, B.A. Jacobs and A.V. McGann Mathematical Modelling of Natural Phenomena 12 (6) 23 (2017) https://doi.org/10.1051/mmnp/2017063
Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains
C. N. Angstmann, B. I. Henry and A. V. McGann Physical Review E 96 (4) (2017) https://doi.org/10.1103/PhysRevE.96.042153
Generalized master equations and fractional Fokker–Planck equations from continuous time random walks with arbitrary initial conditions
C.N. Angstmann, B.I. Henry and I. Ortega-Piwonka Computers & Mathematics with Applications 73 (6) 1315 (2017) https://doi.org/10.1016/j.camwa.2016.11.015
Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk
Daniel K. Burnell, Scott K. Hansen and Jie Xu Advances in Water Resources 107 370 (2017) https://doi.org/10.1016/j.advwatres.2017.06.014
A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions
G. Gill, P. Straka, A. Nepomnyashchy and V. Volpert Mathematical Modelling of Natural Phenomena 11 (3) 34 (2016) https://doi.org/10.1051/mmnp/201611303
Continuous Time Random Walk Based Theory for a One-Dimensional Coarsening Model
Diego Torrejon, Maria Emelianenko and Dmitry Golovaty Journal of Elliptic and Parabolic Equations 2 (1-2) 189 (2016) https://doi.org/10.1007/BF03377401
A fractional-order infectivity SIR model
C.N. Angstmann, B.I. Henry and A.V. McGann Physica A: Statistical Mechanics and its Applications 452 86 (2016) https://doi.org/10.1016/j.physa.2016.02.029
A Mathematical Model for the Proliferation, Accumulation and Spread of Pathogenic Proteins Along Neuronal Pathways with Locally Anomalous Trapping
C. N. Angstmann, I. C. Donnelly, B. I. Henry, et al. Mathematical Modelling of Natural Phenomena 11 (3) 142 (2016) https://doi.org/10.1051/mmnp/20161139
A Fractional Order Recovery SIR Model from a Stochastic Process
C. N. Angstmann, B. I. Henry and A. V. McGann Bulletin of Mathematical Biology 78 (3) 468 (2016) https://doi.org/10.1007/s11538-016-0151-7
Measurements and models of reactive transport in geological media
Brian Berkowitz, Ishai Dror, Scott K. Hansen and Harvey Scher Reviews of Geophysics 54 (4) 930 (2016) https://doi.org/10.1002/2016RG000524
From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations
C.N. Angstmann, I.C. Donnelly, B.I. Henry, et al. Journal of Computational Physics 307 508 (2016) https://doi.org/10.1016/j.jcp.2015.11.053
Mathematical Modelling of Subdiffusion-reaction Systems
A. A. Nepomnyashchy and V. Volpert Mathematical Modelling of Natural Phenomena 11 (1) 26 (2016) https://doi.org/10.1051/mmnp/201611102
Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecularA+B→0reactions: From micro- to mesoscopic
Scott K. Hansen and Brian Berkowitz Physical Review E 91 (3) (2015) https://doi.org/10.1103/PhysRevE.91.032113
Generalized Continuous Time Random Walks, Master Equations, and Fractional Fokker--Planck Equations
C. N. Angstmann, I. C. Donnelly, B. I. Henry, T. A. M. Langlands and P. Straka SIAM Journal on Applied Mathematics 75 (4) 1445 (2015) https://doi.org/10.1137/15M1011299
Persistent random walk of cells involving anomalous effects and random death
Sergei Fedotov, Abby Tan and Andrey Zubarev Physical Review E 91 (4) (2015) https://doi.org/10.1103/PhysRevE.91.042124
A discrete time random walk model for anomalous diffusion
C.N. Angstmann, I.C. Donnelly, B.I. Henry and J.A. Nichols Journal of Computational Physics 293 53 (2015) https://doi.org/10.1016/j.jcp.2014.08.003
Transport equations for subdiffusion with nonlinear particle interaction
P. Straka and S. Fedotov Journal of Theoretical Biology 366 71 (2015) https://doi.org/10.1016/j.jtbi.2014.11.012
Subdiffusion-reaction processes withA→Breactions versus subdiffusion-reaction processes withA+B→Breactions
Tadeusz Kosztołowicz and Katarzyna D. Lewandowska Physical Review E 90 (3) (2014) https://doi.org/10.1103/PhysRevE.90.032136
Stochastic modeling analysis of sequential first-order degradation reactions and non-Fickian transport in steady state plumes
Daniel K. Burnell, James W. Mercer and Charles R. Faust Water Resources Research 50 (2) 1260 (2014) https://doi.org/10.1002/2013WR013814
Cattaneo-type subdiffusion-reaction equation
Tadeusz Kosztołowicz Physical Review E 90 (4) (2014) https://doi.org/10.1103/PhysRevE.90.042151
Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus
Abdon Atangana and Dumitru Baleanu International Journal of Non-Linear Mechanics 67 278 (2014) https://doi.org/10.1016/j.ijnonlinmec.2014.09.010
Subdiffusion of mixed origin with chemical reactions
V. P. Shkilev Journal of Experimental and Theoretical Physics 117 (6) 1066 (2013) https://doi.org/10.1134/S1063776113140045
Nonlinear subdiffusive fractional equations and the aggregation phenomenon
Sergei Fedotov Physical Review E 88 (3) (2013) https://doi.org/10.1103/PhysRevE.88.032104
Continuous-time random walks on networks with vertex- and time-dependent forcing
C. N. Angstmann, I. C. Donnelly, B. I. Henry and T. A. M. Langlands Physical Review E 88 (2) (2013) https://doi.org/10.1103/PhysRevE.88.022811