The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
M. Ehrnström , H. Kalisch
Math. Model. Nat. Phenom., 8 5 (2013) 13-30
Published online: 2013-09-17
This article has been cited by the following article(s):
33 articles
Modulational Instability in the Ostrovsky Equation and Related Models
Bhavna, Mathew A. Johnson and Ashish Kumar Pandey SIAM Journal on Mathematical Analysis 56 (6) 7390 (2024) https://doi.org/10.1137/23M1608665
The superharmonic instability and wave breaking in Whitham equations
John D. Carter, Marc Francius, Christian Kharif, Henrik Kalisch and Malek Abid Physics of Fluids 35 (10) (2023) https://doi.org/10.1063/5.0164084
Periodic Hölder waves in a class of negative-order dispersive equations
Fredrik Hildrum and Jun Xue Journal of Differential Equations 343 752 (2023) https://doi.org/10.1016/j.jde.2022.10.023
Waves of maximal height for a class of nonlocal equations with inhomogeneous symbols
Hung Le Asymptotic Analysis 127 (4) 355 (2022) https://doi.org/10.3233/ASY-211694
Bidirectional Whitham type equations for internal waves with variable topography
Chunxin Yuan and Zhan Wang Ocean Engineering 257 111600 (2022) https://doi.org/10.1016/j.oceaneng.2022.111600
Rigorous justification of the Whitham modulation equations for equations of Whitham type
William A. Clarke, Robert Marangell and Wesley R. Perkins Studies in Applied Mathematics 149 (2) 297 (2022) https://doi.org/10.1111/sapm.12500
Whitham modulation theory for generalized Whitham equations and a general criterion for modulational instability
Adam L. Binswanger, Mark A. Hoefer, Boaz Ilan and Patrick Sprenger Studies in Applied Mathematics 147 (2) 724 (2021) https://doi.org/10.1111/sapm.12398
Stability of periodic progressive gravity wave solutions of the Whitham equation in the presence of vorticity
C. Kharif, M. Abid, J.D. Carter and H. Kalisch Physics Letters A 384 (2) 126060 (2020) https://doi.org/10.1016/j.physleta.2019.126060
Generalized solitary waves in the gravity‐capillary Whitham equation
Mathew A. Johnson and J. Douglas Wright Studies in Applied Mathematics 144 (1) 102 (2020) https://doi.org/10.1111/sapm.12288
Small Amplitude Traveling Waves in the Full-Dispersion Whitham Equation
Atanas Stefanov and J. Douglas Wright Journal of Dynamics and Differential Equations 32 (1) 85 (2020) https://doi.org/10.1007/s10884-018-9713-8
Solitary waves in dispersive evolution equations of Whitham type with nonlinearities of mild regularity
Fredrik Hildrum Nonlinearity 33 (4) 1594 (2020) https://doi.org/10.1088/1361-6544/ab60d5
On the Bifurcation Diagram of the Capillary–Gravity Whitham Equation
Mats Ehrnström, Mathew A. Johnson, Ola I. H. Maehlen and Filippo Remonato Water Waves 1 (2) 275 (2019) https://doi.org/10.1007/s42286-019-00019-4
A comparative study of bi-directional Whitham systems
Evgueni Dinvay, Denys Dutykh and Henrik Kalisch Applied Numerical Mathematics 141 248 (2019) https://doi.org/10.1016/j.apnum.2018.09.016
Long wave dynamics for a liquid CO2 lake in the deep ocean
Krister J. Trandal and Henrik Kalisch Applied Numerical Mathematics 141 144 (2019) https://doi.org/10.1016/j.apnum.2019.01.012
Linear Instability and Uniqueness of the Peaked Periodic Wave in the Reduced Ostrovsky Equation
Anna Geyer and D. Pelinovsky SIAM Journal on Mathematical Analysis 51 (2) 1188 (2019) https://doi.org/10.1137/18M117978X
On Whitham's conjecture of a highest cusped wave for a nonlocal dispersive equation
Mats Ehrnström and Erik Wahlén Annales de l'Institut Henri Poincaré C, Analyse non linéaire (2019) https://doi.org/10.1016/j.anihpc.2019.02.006
Existence of a Highest Wave in a Fully Dispersive Two-Way Shallow Water Model
Mats Ehrnström, Mathew A. Johnson and Kyle M. Claassen Archive for Rational Mechanics and Analysis 231 (3) 1635 (2019) https://doi.org/10.1007/s00205-018-1306-5
Fully dispersive models for moving loads on ice sheets
E. Dinvay, H. Kalisch and E. I. Părău Journal of Fluid Mechanics 876 122 (2019) https://doi.org/10.1017/jfm.2019.530
A note on well-posedness of bidirectional Whitham equation
Long Pei and Yuexun Wang Applied Mathematics Letters 98 215 (2019) https://doi.org/10.1016/j.aml.2019.06.015
The Whitham equation for hydroelastic waves
Evgueni Dinvay, Henrik Kalisch, Daulet Moldabayev and Emilian I. Părău Applied Ocean Research 89 202 (2019) https://doi.org/10.1016/j.apor.2019.04.026
Numerical Bifurcation and Spectral Stability of Wavetrains in Bidirectional Whitham Models
Kyle M. Claassen and Mathew A. Johnson Studies in Applied Mathematics 141 (2) 205 (2018) https://doi.org/10.1111/sapm.12221
On Whitham and Related Equations
Christian Klein, Felipe Linares, Didier Pilod and Jean‐Claude Saut Studies in Applied Mathematics 140 (2) 133 (2018) https://doi.org/10.1111/sapm.12194
The Whitham equation with surface tension
Evgueni Dinvay, Daulet Moldabayev, Denys Dutykh and Henrik Kalisch Nonlinear Dynamics 88 (2) 1125 (2017) https://doi.org/10.1007/s11071-016-3299-7
Numerical bifurcation for the capillary Whitham equation
Filippo Remonato and Henrik Kalisch Physica D: Nonlinear Phenomena 343 51 (2017) https://doi.org/10.1016/j.physd.2016.11.003
A numerical study of the Whitham equation as a model for steady surface water waves
Handan Borluk, Henrik Kalisch and David P. Nicholls Journal of Computational and Applied Mathematics 296 293 (2016) https://doi.org/10.1016/j.cam.2015.09.018
New Approaches to Nonlinear Waves
Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson Lecture Notes in Physics, New Approaches to Nonlinear Waves 908 83 (2016) https://doi.org/10.1007/978-3-319-20690-5_4
Existence of solitary-wave solutions to nonlocal equations
Mathias Nikolai Arnesen Discrete and Continuous Dynamical Systems 36 (7) 3483 (2016) https://doi.org/10.3934/dcds.2016.36.3483
Modulational Instability in the Whitham Equation for Water Waves
Vera Mikyoung Hur and Mathew A. Johnson Studies in Applied Mathematics 134 (1) 120 (2015) https://doi.org/10.1111/sapm.12061
Modulational instability in the Whitham equation with surface tension and vorticity
Vera Mikyoung Hur and Mathew A. Johnson Nonlinear Analysis: Theory, Methods & Applications 129 104 (2015) https://doi.org/10.1016/j.na.2015.08.019
On periodic solutions of interfacial waves of finite amplitude
Y. Mark and T. Miloh European Journal of Mechanics - B/Fluids 49 58 (2015) https://doi.org/10.1016/j.euromechflu.2014.07.009
The Whitham Equation as a model for surface water waves
Daulet Moldabayev, Henrik Kalisch and Denys Dutykh Physica D: Nonlinear Phenomena 309 99 (2015) https://doi.org/10.1016/j.physd.2015.07.010
Elliptic and Parabolic Equations
Mats Ehrnström, Joachim Escher and Long Pei Springer Proceedings in Mathematics & Statistics, Elliptic and Parabolic Equations 119 63 (2015) https://doi.org/10.1007/978-3-319-12547-3_3
Stability of traveling wave solutions to the Whitham equation
Nathan Sanford, Keri Kodama, John D. Carter and Henrik Kalisch Physics Letters A 378 (30-31) 2100 (2014) https://doi.org/10.1016/j.physleta.2014.04.067