Free Access
Issue
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Bifurcations
Page(s) 13 - 30
DOI https://doi.org/10.1051/mmnp/20138502
Published online 17 September 2013
  1. H. Amann. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr., 186 (1997), 5–56. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. L. Bona, T. Colin, D. Lannes. Long wave approximations for water waves. Arch. Ration. Mech. Anal., 178 (2005), 373–410. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Boyd. Chebyshev and Fourier spectral methods. Dover Publications Inc., Mineola, 2001. [Google Scholar]
  4. J. P. Boyd. A Legendre-pseudospectral method for computing travelling waves with corners (slope discontinuities) in one space dimension with application to Whitham’s equation family. J. Comput. Phys., 189 (2003), 98–110. [CrossRef] [Google Scholar]
  5. B. Buffoni. Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal., 173 (2004), 25–68. [MathSciNet] [Google Scholar]
  6. B. Buffoni, J. F. Toland. Analytic theory of global bifurcation. Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2003. [Google Scholar]
  7. C. Canuto, M. Y. Hussaini, A. Quarteroni, T.A. Zang. Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York, 1988. [Google Scholar]
  8. W. Craig. An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations, 10 (1985), 787–1003. [Google Scholar]
  9. M. Ehrnström, M. D. Groves, E. Wahlén. Solitary waves of the Whitham equation - a variational approach to a class of nonlocal evolution equations and existence of solitary waves of the Whitham equation. Nonlinearity, 25 (2012), 2903–2936. [CrossRef] [Google Scholar]
  10. M. Ehrnström, H. Kalisch. Traveling waves for the Whitham equation. Differential Integral Equations, 22 (2009), 1193–1210. [MathSciNet] [Google Scholar]
  11. T. Gneiting. Criteria of Pólya type for radial positive definite functions. Proc. Amer. Math. Soc., 129 (2001), 2309–2318. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. D. Groves, E. Wahlén. On the existence and conditional energetic stability of solitary gravity-capillary surface waves on deep water, J. Math. Fluid Mech., 13(4):593-627, 2011. [CrossRef] [MathSciNet] [Google Scholar]
  13. Y. Katznelson. An introduction to harmonic analysis. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. [Google Scholar]
  14. H. Kielhöfer. Bifurcation theory. Applied Mathematical Sciences, vol. 156, Springer, New York, 2004. [Google Scholar]
  15. P. I. Naumkin, I. A. Shishmarev. Nonlinear nonlocal equations in the theory of waves. Translations of Mathematical Monographs. vol. 133. American Mathematical Society, Providence, 1994. [Google Scholar]
  16. G. Schneider, C. E. Wayne. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., 53 (2000), 1475–1535. [CrossRef] [MathSciNet] [Google Scholar]
  17. H. Triebel. Theory of function spaces. Monographs in Mathematics, vol. 78, Birkhäuser, Basel, 1983. [Google Scholar]
  18. G. B. Whitham. Variational methods and applications to water waves. Proc. R. Soc. Lond., A 299 (1967), 6–25. [Google Scholar]
  19. G. B. Whitham. Linear and nonlinear waves. Pure and Applied Mathematics, John Wiley & Sons, New York, 1974. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.