Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Page(s) 1 - 12
Published online 17 September 2013
  1. V. Arnold, A. Varchenko, S. Gussein-Zade. Singularities of differentiable maps. Nauka, Moscow, 1984. (Russian) [Google Scholar]
  2. V. M. Babich, V. S. Buldyrev. Asymptotic methods in short wave diffraction problems. Nauka, Moscow, 1972. (Russian) [Google Scholar]
  3. M. V. Berry, D. H. J. ODell. Ergodicity in wave–wave diffraction. J. Phys. A: Math. Gen., 32 (1999), 3571–3582. [CrossRef] [Google Scholar]
  4. M. V. Berry, C. Upstill. Catastrophe optics: morphologies of caustics and their diffraction patterns. Prog. Opt., 18 (1980), 257–346. [CrossRef] [Google Scholar]
  5. S. Yu. Dobrokhotov. Asymptotic behavior of water surface waves trapped by shores and irregularities of the bottom relief. Dokl. Akad. Nauk SSSR, 289:3 (1986), 575–579. English transl., Soviet Phys. Dokl., 31:7 (1986), 537–539. [Google Scholar]
  6. S. Yu. Dobrokhotov, R. Nekrasov, B. Tirozzi. Asymptotic solutions of the linear shallow water equations with localized initial data. J. Engng Math., 69:2 (2011), 225–242. [CrossRef] [Google Scholar]
  7. S. Dobrokhotov, M. Rouleux. The semi-classical Maupertuis–Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory. Asymptotic Analysis, 74:1–2 (2011), 33–73. [MathSciNet] [Google Scholar]
  8. S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich. A class of exact algebraic localized solutions of the multidimensional wave equation. Mat. Zametki, 88:6 (2010), 942–945. English transl., Math. Notes, 88:6 (2010), 894–897. [CrossRef] [Google Scholar]
  9. S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, B. Tirozzi, T. Ya. Tudorovskiy. Description of tsunami propagation based on the Maslov canonical operator. Dokl. Ross. Akad. Nauk, 409:2 (2006), 171–175. English transl., Russian Acad. Sci. Dokl. Math., 74:1 (2006), 592–596. [Google Scholar]
  10. S. Yu. Dobrokhotov, S. Ya Sekerzh-Zenkovich, B. Tirozzi, B. Volkov. Explicit asymptotics for tsunami waves in framework of the piston model. Russian J. Earth Sci., 8:ES403, 1–12 (2006). [CrossRef] [Google Scholar]
  11. S. Yu. Dobrokhotov, S. Ya Sekerzh-Zenkovich, B. Tirozzi, B. Volkov. Asymptotic description of tsunami waves in the framework of the piston model: The general constructions and explicitly solvable models. Fund. Appl. Geophysics, 2 (2009), 15–29. (Russian) [Google Scholar]
  12. S. Dobrokhotov, A. Shafarevich, B. Tirozzi. Localized wave and vortical solutions to linear hyperbolic systems and their application to the linear shallow water equations. Russian J. Math. Phys., 15:2 (2008), 192–221. [CrossRef] [Google Scholar]
  13. S. Yu. Dobrokhotov, B. Tirozzi, C. A. Vargas. Behavior near the focal points of asymptotic solutions to the Cauchy problem for the linearized shallow water equations with initial localized perturbations. Russian J. Math. Phys., 16:2 (2009), 228–245. [CrossRef] [Google Scholar]
  14. S. Yu. Dobrokhotov, P. N. Zhevandrov. Nonstandard characteristics and Maslov’s operator method in linear problems on transient water waves. Funktsional. Anal. i Prilozhen., 19:4 (1985), 43–54. English transl., Functional Anal. Appl., 19:4 (1985), 285–295. [MathSciNet] [Google Scholar]
  15. S. F. Dotsenko, B. Yu. Sergievskii, L. V. Cherkasov. Space tsunami waves generated by alternating displacement of the ocean surface. Tsunami Research, 1 (1986), 7–14. (Russian) [Google Scholar]
  16. J. J. Duistermaat. Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math., 27 (1974), 207–281. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. V. Fedoryuk. Mountain pass method. Moscow, Nauka, 1977. [Google Scholar]
  18. R. M. Garipov. Transient waves over an underwater ridge. Dokl. Akad. Nauk SSSR, 161:3 (1965), 547–550. (Russian) [Google Scholar]
  19. D. A. Indeytsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova. Trapped linear waves. St.-Petersburg State University Press, St.-Petersburg, 2007. (Russian) [Google Scholar]
  20. J. B. Keller. Surface waves on water of nonuniform depth. J. Fluid Mech., 4 (1958), 607–614. [CrossRef] [Google Scholar]
  21. P. H. Le Blond, L. A. Mysak. Waves in the ocean. Elsevier, Amsterdam, 1978. [Google Scholar]
  22. D. A. Lozhnikov. Analytic-numerical description of asymptotic solutions of a Cauchy problem in a neighbourhood of singularities for a linearized system of shallow water equations. Russian J. Math. Phys., 19 (1958), 607–614. [Google Scholar]
  23. V. S. Matveev. The Asymptotic eigenfunctions of the operator ∇D(x, y)∇ corresponding to liouville metrics and waves on water captured by bottom irregularities. Mat. Zametki, 64 (1958), 607–614. English transl., Math. Notes, 64:3 (1998), 357–363. [Google Scholar]
  24. C. C. Mei. The applied dynamics of ocean surface waves. World Scientific, Singapore, 1989. [Google Scholar]
  25. E. N. Pelinovskii. Hydrodynamics of tsunami waves. Nizhni Novgorod, 1996. (Russian) [Google Scholar]
  26. S. Ya. Sekerzh-Zenkovich. Simple asymptotic solution to the Cauchy–Poisson problem for leading waves. Russian J. Math. Phys., 16 (1958), 607–614. [Google Scholar]
  27. R. Thom. Structural stability and morphogenesis. Advanced Books Classics. Benjamin, Reading, 1975. [Google Scholar]
  28. B. R. Vainberg. Asymptotic methods in equations of mathematical physics. Moscow University, Moscow, 1982. English transl., Gordon and Breach, New York, 1989. [Google Scholar]
  29. S. Wang. The Propagation of the Leading Wave. ASCE Specialty Conference on Coastal Hydrodynamics, University of Delaware, June 29–July 1 (1987), 657–670. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.