Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Page(s) 31 - 47
Published online 17 September 2013
  1. I. Y. Akkutlu, Y. C. Yortsos. The dynamics of in-situ combustion fronts in porous media. Combustion and Flame, 134 (2003), 229–247. [CrossRef] [Google Scholar]
  2. S. Balasuriya, G. Gottwald, J. Hornibrook, S. Lafortune. High Lewis number combustion wavefronts: a perturbative Melnikov analysis. SIAM J. Appl. Math., 67 (2007), 464–486. [CrossRef] [Google Scholar]
  3. P. W. Bates, C. K. R. T. Jones. Invariant manifolds for semilinear partial differential equations. Dynamics Reported 2, 1–38, Dynam. Report. Ser. Dynam. Systems Appl. vol. 2. Wiley, Chichester, 1989. [Google Scholar]
  4. P. Bates, K. Lu, C. Zeng. Invariant foliations near normally hyperbolic invariant manifolds for semiflows. Trans. Amer. Math. Soc., 352 (2000), 4641–4676. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Bates, K. Lu, C. Zeng. Existence and persistence of invariant manifolds for semiflows in Banach space. Mem. Amer. Math. Soc., 135 (1998), no. 645. [Google Scholar]
  6. A. Bayliss, B. Matkowsky. Two routes to chaos in condensed phase combustion. SIAM J. Appl. Math., 50 (1990), 437–459. [CrossRef] [MathSciNet] [Google Scholar]
  7. V. Giovangigli. Nonadiabatic plane laminar flames and their singular limits. SIAM J. Math. Anal., 21 (1990), 1305–1325. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Beck, A. Ghazaryan, B. Sandstede. Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities. J. Differential Equations, 246 (2009), 4371–4390. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Brand, M. Kunze, G. Schneider, T. Seelbach. Hopf bifurcation and exchange of stability in diffusive media. Arch. Ration. Mech. Anal., 171 (2004), 263–296. [CrossRef] [Google Scholar]
  10. R. J. Briggs. Electron-stream interaction with plasmas. MIT Press, Cambridge, MA, 1964. [Google Scholar]
  11. V. Capasso, L. Maddalena. Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biology, 13 (1981), 173–184. [CrossRef] [MathSciNet] [Google Scholar]
  12. X.-Y. Chen, J. K. Hale, B., Tan. Invariant foliations for C1 semigroups in Banach spaces. J. Differential Equations, 139 (1997), 283–318. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Chicone, Y. Latushkin. Evolution semigroups in dynamical systems and differential equations. Math. Surv. Monogr., 70, AMS, Providence, 1999. [Google Scholar]
  14. C. Chicone, Y. Latushkin. Center manifolds for infinite-dimensional nonautonomous differential equations. J. Differential Equations, 141 (1997), 356–399. [CrossRef] [MathSciNet] [Google Scholar]
  15. B. Deng. The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations. SIAM J. Math. Anal., 22 (1991), 653–679. [CrossRef] [MathSciNet] [Google Scholar]
  16. K. Engel, R. Nagel. One-parameter semigroups for linear evolution equations. Springer, New York, 2000. [Google Scholar]
  17. J. W. Evans. Nerve axon equations. III. Stability of the nerve impulse. Indiana Univ. Math. J., 22 (1972), 577–593. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Feireisl. Bounded, locally compact global attractors for semilinear damped wave equations on RN. Diff. Int. Eqns., 9 (1996), 1147–1156. [Google Scholar]
  19. A. Ghazaryan. Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J., 58 (2009), 181–212. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Ghazaryan, C. K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete Contin. Dyn. Syst., 24 (2009), 809–826. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Ghazaryan, Y. Latushkin, S. Schecter, A. J. de Souza. Stability of gasless combustion fronts in one-dimensional solids. Arch. Ration. Mech. Anal., 198 (2010), 981–1030. [CrossRef] [Google Scholar]
  22. A. Ghazaryan, Y. Latushkin, S. Schecter. Stability of traveling waves for degenerate systems of reaction diffusion equations. Indiana Univ. Math. J., 60 (2011), 443–472. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Ghazaryan, Y. Latushkin, S. Schecter. Stability of traveling waves for a class of reaction-diffusion systems that arise in chemical reaction models. SIAM J. Math. Anal., 42 (2010), 2434–2472. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Ghazaryan, B. Sandstede. Nonlinear convective instability of Turing-unstable fronts near onset: a case study. SIAM J. Appl. Dyn. Syst., 6 (2007), 319–347. [CrossRef] [Google Scholar]
  25. A. Ghazaryan, P. Simon, S. Schecter. Gasless combustion fronts with heat loss. To appear in SIAM J. Appl. Math. [Google Scholar]
  26. P. Gordon. Recent mathematical results on combustion in hydraulically resistant porous media. Math. Model. Nat. Phenom., 2 (2007), 56–76. [CrossRef] [EDP Sciences] [Google Scholar]
  27. K. P. Hadeler, M. A. Lewis. Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Canadian Appl. Math. Quart, 10 (2002), 473–499. [Google Scholar]
  28. S. Heinze, B. Schweizer. Creeping fronts in degenerate reaction diffusion systems. Nonlinearity, 18 (2005), 2455–2476. [CrossRef] [MathSciNet] [Google Scholar]
  29. D. Henry. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics vol. 840. Springer, New York, 1981. [Google Scholar]
  30. T. Kapitula, K. Promislow. An introduction to spectral and dynamical stability. Springer, New York, to appear. [Google Scholar]
  31. B. Kazmierczak, V. Volpert. Travelling waves in partially degenerate reaction-diffusion systems. Math. Model. Nat. Phenom., 2 (2007), 106–125. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  32. B. Kazmierczak, V. Volpert. Calcium waves in a system with immobible buffers as a limit of waves with a system with nonzero diffusion. Nonlinearity, 21 (2008), 71–96. [CrossRef] [MathSciNet] [Google Scholar]
  33. B. Kazmierczak, V. Volpert. Mechano-chemical calcium waves in systems with immobile buffers. Arch. Mech., 60 (2008), 3–22 . [Google Scholar]
  34. B. Kazmierczak, V. Volpert. Travelling calcium waves in a system with non-diffusing buffers. Math. Methods and Models in Appl. Sci., 18 (2008), 883–912. [CrossRef] [MathSciNet] [Google Scholar]
  35. G. Kreiss, H.-O. Kreiss, N. A. Petersson. On the convergence to steady state of solutions of nonlinear hyperbolic-parabolic systems. SIAM J. Numer. Anal., 31 (1994), 157–1604. [CrossRef] [Google Scholar]
  36. M. Kunze, G. Schneider. Exchange of stability and finite-dimensional dynamics in a bifurcation problem with marginally stable continuous spectrum. Z. Angew. Math. Phys., 55 (2004), 383–399. [CrossRef] [MathSciNet] [Google Scholar]
  37. Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete Contin. Dynam. Systems, 5 (1999), 233–268. [CrossRef] [MathSciNet] [Google Scholar]
  38. Y. Latushkin, J. Prüss, R. Schnaubelt. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 595–633. [CrossRef] [MathSciNet] [Google Scholar]
  39. Y. Li, Y. Wu. Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems. SIAM J. Math. Anal., 44 (2012), 1474–1521. [CrossRef] [MathSciNet] [Google Scholar]
  40. S. Luckhaus, L. Triolo. The continuum reaction-diffusion limit of a stochastic cellular growth model. Rend. Mat. Acc. Lincei„ 15 (2004), 215–223. [Google Scholar]
  41. A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Progr. Nonlin. Diff. Eqns. Appl. vol. 16, Birkhäuser, Basel, 1995. [Google Scholar]
  42. A. Mielke, G. Schneider. Attractors for modulation equations on unbounded domains—existence and comparison. Nonlinearity, 8 (1995), 743–768. [CrossRef] [Google Scholar]
  43. J. D. Murray. Mathematical biology. I. An introduction and II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics vols. 17, 18. Springer, New York, 2002, 2003. [Google Scholar]
  44. S. Nii. Stability of travelling multiple-front (multiple-back) wave solutions of the FitzHugh-Nagumo equations. SIAM J. Math. Anal., 28 (1997), 1094–1112. [CrossRef] [MathSciNet] [Google Scholar]
  45. R. L. Pego, M. I. Weinstein. Asymptotic stability of solitary waves. Comm. Math. Phys., 164 (1994), 305–349. [Google Scholar]
  46. L. Roques. Study of the premixed flame model with heat losses. The existence of two solutions. European J. Appl. Math., 16 (2005), 741–765. [CrossRef] [MathSciNet] [Google Scholar]
  47. J. Rottmann-Matthes. Computation and stability of patterns in hyperbolic-parabolic systems. Shaker Verlag, Aachen, 2010. [Google Scholar]
  48. J. Rottman-Matthes. Linear stability of travelling waves in first-order hyperbolic PDEs. J. Dynam. Differential Equations, 23 (2011), 365–393. [Google Scholar]
  49. J. Rottmann-Matthes. Stability of parabolic-hyperbolic traveling waves. Dynamics of Part. Diff. Eqns., 9 (2012) 29–62. [CrossRef] [Google Scholar]
  50. J. Rottmann-Matthes. Stability and freezing of nonlinear waves in first order hyperbolic PDEs. J. Dynam. Differential Equations, 24 (2012), 341–367. [Google Scholar]
  51. J. Rottmann-Matthes. Stability and freezing of waves in non-linear hyperbolic-parabolic systems. IMA J. Appl. Math., 77 (2012), 420–429. [CrossRef] [MathSciNet] [Google Scholar]
  52. B. Sandstede. Stability of N-fronts bifurcating from a twisted heteroclinic loop and an application to the FitzHugh–Nagumo equation. SIAM J. Math. Anal., 29 (1998), 183–207. [CrossRef] [MathSciNet] [Google Scholar]
  53. B. Sandstede. Stability of traveling waves. In Handbook of dynamical systems, vol. 2, 983–1055. North-Holland, Amsterdam, 2002. [Google Scholar]
  54. B. Sandstede, A. Scheel. Absolute and convective instabilities of waves on unbounded and large bounded domains. Phys. D, 145 (2000), 233–277. [CrossRef] [MathSciNet] [Google Scholar]
  55. D. H. Sattinger. On the stability of waves of nonlinear parabolic systems. Adv. Math., 22 (1976), 312–355. [CrossRef] [MathSciNet] [Google Scholar]
  56. G. Sell, Y. You. Dynamics of evolutionary equations. Applied Mathematical Sciences vol. 143, Springer, 2002. [Google Scholar]
  57. P. Simon, J. Merkin, S. Scott. Bifurcations in non-adiabatic flame propagation models. Focus on Combustion Research (2006), 315–357. [Google Scholar]
  58. P. Simon, S. Kalliadasis, J.H. Merkin, S.K. Scott. Inhibition of flame propagation by an endothermic reaction. IMA J. Appl. Math., 68 (2003), 537–562. [CrossRef] [MathSciNet] [Google Scholar]
  59. P. Simon, S. Kalliadasis, J.H. Merkin, S.K. Scott. Stability of flames in an exothermic-endothermic system. IMA J. Appl. Math., 69 (2004), 175–203. [CrossRef] [MathSciNet] [Google Scholar]
  60. P. Simon, S. Kalliadasis, J.H. Merkin, S.K. Scott. On the structure of the spectra for a class of combustion waves. J. Math. Chem., 35 (2004), 309–328. [CrossRef] [Google Scholar]
  61. P. Simon, J. Merkin, S. Scott. Bifurcations in non-adiabatic flame propagation models. Focus on Combustion Research (2006), 315–357. [Google Scholar]
  62. J.-C. Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete Contin. Dyn. Syst., 21 (2008), 601–623. [CrossRef] [MathSciNet] [Google Scholar]
  63. J.-C. Tsai, J. Sneyd. Existence and stability of traveling waves in buffered systems. SIAM J. Appl. Math., 66 (2005), 237–265. [CrossRef] [Google Scholar]
  64. J.-C. Tsai, W. Zhang, V. Kirk, J. Sneyd. Traveling waves in a simplified model of calcium dynamics. SIAM J. Appl. Dyn. Systems, 11 (2012), 1149–1199. [CrossRef] [MathSciNet] [Google Scholar]
  65. J. M. A. M. van Neerven. The asymptotic behavior of semigroups of linear operators. Operator Theory: Advances and Applications vol. 88. Birkhäuser, Basel, 1996. [Google Scholar]
  66. W. van Saarloos. Front propagation into unstable states. Phys. Rep., 386 (2003), 29–222. [CrossRef] [Google Scholar]
  67. F. Varas, J. Vega. Linear stability of a plane front in solid combustion at large heat of reaction. SIAM J. Appl. Math., 62 (2002), 1810–1822. [CrossRef] [Google Scholar]
  68. V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In Dispersal, individual movement and spatial ecology: a mathematical perspective. Lecture Notes in Mathematics vol. 2071, 331–354. Springer, New York, 2013. [Google Scholar]
  69. E. Yanagida. Stability of travelling front solutions of the FitzHugh–Nagumo equations. Math. Comput. Modelling, 12 (1989), 289–301. [CrossRef] [MathSciNet] [Google Scholar]
  70. K. Zumbrun, P. Howard. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J., 47 (1998), 741–871. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.