Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 8, Number 5, 2013
Bifurcations
|
|
---|---|---|
Page(s) | 48 - 70 | |
DOI | https://doi.org/10.1051/mmnp/20138504 | |
Published online | 17 September 2013 |
- S.V. Gonchenko, I.I. Ovsyannikov, C. Simó, D. Turaev. Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Bifurcation and Chaos, 15 (2005), 3493–3508. [CrossRef] [MathSciNet] [Google Scholar]
- V.S. Afraimovich, V.V. Bykov, L.P. Shilnikov. The origin and structure of the Lorenz attractor. Sov. Phys. Dokl., 22 (1977), 253–255. [Google Scholar]
- V.S. Afraimovich, V.V. Bykov, L.P. Shilnikov. On attracting structurally unstable limit sets of lorenz attractor type. Trans. Mosc. Math. Soc., 44 (1982), 153–216. [Google Scholar]
- J. Guckenheimer. A strange, strange attractor. In The Hopf Bifurcation Theorem and its Applications, eds. J. Marsden and M. McCracken, Springer-Verlag, 1976, 368–381. [Google Scholar]
- J. Guckenheimer, R.F. Williams. Structural stability of Lorenz attractors. IHES Publ. Math., 50 (1979), 59–72. [CrossRef] [Google Scholar]
- R.F. Williams. The structure of Lorenz attractors. IHES Publ. Math., 50 (1979), 73–79. [CrossRef] [Google Scholar]
- L.A. Bunimovich, Ya.G. Sinai. Stochasticity of the attractor in the Lorenz model. In Nonlinear Waves (Proc. Winter School, Moscow), Nauka, 1980, 212–226. [Google Scholar]
- C. Robinson. Differentiability of the stable foliation for the model Lorenz equations. Lect. Notes Math., 898 (1981), 302–315. [CrossRef] [Google Scholar]
- V.S. Aframovich, L.P. Shilnikov. Strange attractors and quasiattractors. in Nonlinear Dynamics and Turbulence, eds. G.I.Barenblatt, G.Iooss, D.D.Joseph, Boston, Pitmen, 1983. [Google Scholar]
- S.E. Newhouse. Non-density of Axiom A(a) on S2. Proc. A.M.S. Symp. in Pure Math., 1 (1970), 191–202. [CrossRef] [Google Scholar]
- S.E. Newhouse. Diffeomorphisms with infinitely many sinks. Topology, 13 (1974), 9–18. [CrossRef] [MathSciNet] [Google Scholar]
- S.E. Newhouse. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. IHES Publ. Math., 50 (1979), 101–151. [CrossRef] [Google Scholar]
- M. Benedicks, L. Carleson. The dynamics of the Henon map. Ann. Math., 133 (1991), 73–169. [CrossRef] [Google Scholar]
- L. Mora, M. Viana. Abundance of strange attractors. Acta Math., 171 (1993), 1–71. [CrossRef] [MathSciNet] [Google Scholar]
- Q.D. Wang, L.-S. Young. Strange attractors with one direction of instability. Commun. Math. Phys., 218 (2001), 1–97. [CrossRef] [Google Scholar]
- R. Ures. On the Approximation of Hénon-like Attractors by Homoclinic Tangencies. Ergod. Th. Dyn. Sys. 15 (1995), 1223–1229. [CrossRef] [Google Scholar]
- A.S. Gonchenko, S.V. Gonchenko. On existence of Lorenz-like attractors in a nonholonomic model of celtic stones. Rus. J. Nonlin. Dyn., 9 (2013), 77-89. [Google Scholar]
- D.V. Turaev, L.P. Shilnikov. An example of a wild strange attractor. Sb. Math., 189 (1998), 291–314. [CrossRef] [MathSciNet] [Google Scholar]
- D.V. Turaev, L.P. Shilnikov. Pseudo-hyperbolisity and the problem on periodic perturbations of Lorenz-like attractors. Russian Dokl. Math., 467 (2008), 23–27. [Google Scholar]
- T. Shimizu, N. Morioka. On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys. Lett. A, 76 (1980), 201–204. [CrossRef] [Google Scholar]
- A.L. Shilnikov. Bifurcation and chaos in the Morioka-Shimizu system. Methods of qualitative theory of differential equations, Gorky, 1986, 180–193 [English translation in Selecta Math. Soviet., 10 (1991) 105–117]; II. Methods of Qualitative Theory and Theory of Bifurcations, Gorky, 1989, 130–138. [Google Scholar]
- A.L. Shilnikov. On bifurcations of the Lorenz attractor in the Shimuizu-Morioka model. Physica D, 62 (1993), 338–346. [CrossRef] [Google Scholar]
- A.L. Shilnikov, L.P. Shilnikov, D.V. Turaev. Normal forms and Lorenz attractors. Bifurcation and Chaos, 3 (1993), 1123–1139. [CrossRef] [Google Scholar]
- H.W.E. Jung. Uber ganze birationale Transformationen der Ebene. J. Reine Angew. Math., 184 (1942), 161–174. [MathSciNet] [Google Scholar]
- S. Friedland, J. Milnor. Dynamical properties of plane polynomial automorphisms. Ergod. Th. Dyn. Sys., 9 (1989), 67–99. [Google Scholar]
- A.J. Dragt, D.T. Abell. Symplectic maps and computation of orbits in particle accelerators. In Integration algorithms and classical mechanics (Toronto, ON, 1993), Amer. Math. Soc., Providence, RI, 1996, 59–85. [Google Scholar]
- H.E. Lomeli, J.D. Meiss. Quadratic volume preserving maps. Nonlinearity, 11 (1998), 557–574. [CrossRef] [Google Scholar]
- S.V. Gonchenko, V.S. Gonchenko, L.P. Shilnikov. On a homoclinic origin of Henon-like maps. Regul. Chaotic Dyn., 15 (2010), 462–481. [CrossRef] [MathSciNet] [Google Scholar]
- L. Tedeschini-Lalli, J.A. Yorke. How often do simple dynamical processes have infinitely many coexisting sinks? Commun. Math. Phys., 106 (1986), 635–657. [CrossRef] [Google Scholar]
- M. Henon. A two-dimensional mapping with a strange attractor. Commun. Math. Phys., 50 (1976), 69–77. [CrossRef] [MathSciNet] [Google Scholar]
- N.K. Gavrilov, L.P. Shilnikov. On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I. Math. USSR Sbornik, 17 (1972), 467–485; II. Math. USSR Sbornik, 19 (1973), 139–156. [Google Scholar]
- S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov. On models with a structurally unstable Poincare homoclinic curve. Sov. Math., Dokl., 44 (1992), 422–426. [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. On models with non-rough Poincare homoclinic curves. Physica D, 62 (1993), 1–14. [CrossRef] [Google Scholar]
- S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov. Dynamical phenomena in multi-dimensional systems with a non-rough Poincare homoclinic curve. Russ. Acad. Sci. Dokl. Math., 47 (1993), 410–415. [Google Scholar]
- S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov. On the existence of Newhouse regions near systems with non-rough Poincare homoclinic curve (multidimensional case). Russian Acad. Sci.Dokl.Math. 47 (1993), 268–283. [Google Scholar]
- J. Palis, M. Viana. High dimension diffeomorphisms displaying infinitely many sinks. Ann. Math., 140 (1994), 91–136. [CrossRef] [Google Scholar]
- N. Romero. Persistence of homoclinic tangencies in higher dimensions. Ergod. Th. Dyn. Sys., 15 (1995), 735–757. [Google Scholar]
- E. Colli. Infinitely many coexisting strange attractors. Ann. IHP, Anal. Non Lineaire, 15 (1998), 539–579. [CrossRef] [Google Scholar]
- J.C. Tatjer. Three dimensional dissipative diffeomorphisms with homoclinic tangencies. Ergod. Th. Dyn. Systems, 21 (2001), 249–302. [Google Scholar]
- A.R. Champneys, J. Haerterich, B. Sandstede. A non-transverse homoclinic orbit to a saddle-node equilibrium. Ergod. Th. Dyn. Sys., 16 (1996), 431–450. [Google Scholar]
- D.V. Turaev D.V. On dimension of non-local bifurcational problems. Bifurcation and Chaos, 6 (1996), 919–948. [CrossRef] [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. Chaos, 6 (1996), 15–31. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. On Newhouse regions of two-dimensional diffeomorphisms close to a diffeomorphism with a nontransversal heteroclinic cycle. Proc. Steklov Inst. Math., 216 (1997), 70–118. [Google Scholar]
- S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov Quasiattractors and homoclinic tangencies. Comput. Math. Appl., 34 (1997), 195–227. [CrossRef] [Google Scholar]
- S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov. Homoclinic tangencies of an arbitrary order in Newhouse domains. In Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., 67 (1999), 69–128 [English translation in J. Math. Sci., 105 (2001), 1738-1778]. [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. On dynamical properties of diffeomorphisms with homoclinic tangencies. Contemprary Mathematics and Its Applications, 7 (2003), 92–118 [English translation in J. Math. Sci., 126 (2005), 1317–1343]. [Google Scholar]
- S. Gonchenko, L. Shilnikov, D. Turaev. Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps. Nonlinearity, 20 (2007), 241–275. [CrossRef] [MathSciNet] [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I. Nonlinearity, 21 (2008), 923–972. [CrossRef] [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov, D.V. Turaev. On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. II. submitted to Nonlinearity (2013). [Google Scholar]
- S.V. Gonchenko, I.I. Ovsyannikov, D. Turaev. On the effect of invisibility of stable periodic orbits at homoclinic bifurcations. Physica D, 241 (2012), 1115–1122. [CrossRef] [Google Scholar]
- S.V.Gonchenko, V.S.Gonchenko. On Andronov-Hopf bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies. preprint WIAS No.556, Berlin, 2000. [Google Scholar]
- S.V. Gonchenko, V.S. Gonchenko. On bifurcations of the birth of closed invariant curves in the case of two-dimensional diffeomorphisms with homoclinic tangencies. Proc. Steklov Inst. Math., 244 (2004), 80–105. [Google Scholar]
- V.S. Gonchenko, Yu.A. Kuznetsov, H.G.E. Meijer. Generalized Henon map and bifurcations of homoclinic tangencies. SIAM J. Appl. Dyn. Sys., 4 (2005), 407–436 [CrossRef] [Google Scholar]
- S.V. Gonchenko, O.V. Sten’kin, L.P. Shilnikov. On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies. Rus. J. Nonlinear Dynamics, 2 (2006), 3–25 [Google Scholar]
- S.V. Gonchenko, V.S. Gonchenko, J.C. Tatjer. Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps. Regul. Chaotic Dyn., 12 (2007), 233–266. [CrossRef] [MathSciNet] [Google Scholar]
- V.S. Gonchenko, L.P. Shilnikov. On bifurcations of systems with homoclinic loops to a saddle-focus with saddle index 1/2. Russian Dokl. Math., 76 (2007), 929–933. [CrossRef] [Google Scholar]
- A. Gonchenko, S. Gonchenko. Towards a classification of linear and nonlinear Smale horseshoes. Rus. Nonlinear Dynamics, 3 (2007), 423–433. [Google Scholar]
- S. Gonchenko, M.-C. Li, M. Malkin. Generalized Henon maps and Smale horseshoes of new types. Bifurcation and Chaos, 18 (2008), 3029–3052. [CrossRef] [MathSciNet] [Google Scholar]
- A. Gonchenko, S. Gonchenko, M. Malkin. On classification of classical and half-orientable horseshoes in terms of border points. Rus. Nonlinear Dynamics, 6 (2010), 549–566. [Google Scholar]
- V.S. Biragov. Bifurcations in two-parameter family of conservative mappings that are close to the Hénon map. Methods of Qualitative Theory and Theory of Bifurcations, Gorky, 1987, 10–24 [English translation in Selecta Math. Sov., 9 (1990), 273–282]. [Google Scholar]
- V. Biragov, L. Shilnikov. On the bifurcation of a saddle-focus separatrix Loop in a three-dimensional conservative dynamical system. Methods of Qualitative Theory and Theory of Bifurcations, Gorky, 1989, 25–34 [English translation in Selecta Math. Soviet., 11 (1992), 333–340]. [Google Scholar]
- L. Mora, N. Romero. Moser’s invariant curves and homoclinic bifurcations. Dyn. Sys. Appl., 6 (1997), 29–42. [Google Scholar]
- P. Duarte. Abundance of elliptic isles at conservative bifurcations. Dynam. Stability Systems, 14 (1999), 339–356. [CrossRef] [MathSciNet] [Google Scholar]
- P. Duarte. Persistent Homoclinic Tangencies for Conservative Maps near the Identity. Ergod. Th. Dyn. Sys., 20 (2000), 393–438. [CrossRef] [Google Scholar]
- P. Duarte. Elliptic Isles in Families of Area-Preserving Maps. Ergod. Th. Dyn. Sys., 28 (2008), 1781–1813. [CrossRef] [Google Scholar]
- V. Rom-Kedar, D. Turaev. Big islands in dispersing billiard-like potentials. Physica D, 130 (1999), 187–210. [Google Scholar]
- D. Turaev, V. Rom-Kedar. Soft billiards with corners. J. Stat. Phys., 112 (2003), 765–813. [CrossRef] [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov. On two-dimensional analytic area-preserving diffeomorphisms with infinitely many stable elliptic periodic points. Regul. Chaotic Dyn., 2 (1997), 106–123 [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov. On two-dimensional area-preserving diffeomorphisms with infinitely many elliptic islands. J. Stat. Phys., 101 (2000), 321–356 [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov. On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points. Notes Sci. seminars PDMI, 300(2003) [English translation in J. Math. Sci. 128 (2), 2767-2773]. [Google Scholar]
- M.S. Gonchenko. On the structure of 1:4 resonances in Hénon maps. Bifurcation and Chaos, 15 (2005), 3653–3660. [Google Scholar]
- M.S. Gonchenko, S.V. Gonchenko. On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies. Regul. Chaotic Dyn., 14 (2009), 116–136 [CrossRef] [MathSciNet] [Google Scholar]
- A. Gorodetski, V. Kaloshin. Conservative homoclinic bifurcations and some applications. Proc. Steklov Inst. Math., 267 (2009), 76–90. [CrossRef] [MathSciNet] [Google Scholar]
- J.S.W. Lamb, O.V. Sten’kin. Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits. Nonlinearity, 17 (2004), 1217–1244. [CrossRef] [MathSciNet] [Google Scholar]
- S.V. Gonchenko, L.P. Shilnikov, D. Turaev. Elliptic periodic orbits near a homoclinic tangency in four-dimensional symplectic maps and Hamiltonian systems with three degrees of freedom. Regul. Chaotic Dyn., 3 (1998), 3–26. [CrossRef] [MathSciNet] [Google Scholar]
- S.V. Gonchenko, D.V. Turaev, L.P. Shilnikov. Infinitely many elliptic periodic orbits in four-dimensional symplectic diffeomorphisms with a homoclinic tangency. Proc. Steklov Inst. Math., 244 (2004), 106–131. [Google Scholar]
- S.V. Gonchenko, J.D. Meiss, I.I. Ovsyannikov. Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation. Regul. Chaotic Dyn., 11 (2006), 191–212. [CrossRef] [MathSciNet] [Google Scholar]
- S.V. Gonchenko, L. Shilnikov, D. Turaev. On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors. Regul. Chaotic Dyn., 14 (2009), 137–147. [CrossRef] [MathSciNet] [Google Scholar]
- S.V. Gonchenko, I.I. Ovsyannikov. On bifurcations of three-dimensional diffeomorphisms with a non-transversal heteroclinic cycle containing saddle-foci. Rus. J. Nonlinear Dynamics, 6 (2010), 61–77 [Google Scholar]
- D. Turaev. Polynomial approximations of symplectic dynamics and richness of chaos in non-hyperbolic area-preserving maps. Nonlinearity, 16 (2003), 123–135. [CrossRef] [Google Scholar]
- D.Turaev. Maps close to identity and universal maps in the Newhouse domain. preprint arXiv:1009.0858, 2010. [Google Scholar]
- A. Delshams, S.V. Gonchenko, V.S. Gonchenko, J.T. Lazaro, O. Sten’kin. Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps. Nonlinearity, 26 (2013), 1–33. [CrossRef] [MathSciNet] [Google Scholar]
- Homoclinic Tangencies, eds. S.V.Gonchenko and L.P.Shilnikov, Regular and Chaotic Dynamics, Moscow-Izhevsk, 2007. [Google Scholar]
- L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L.O. Chua. Methods of qualitative theory in nonlinear dynamics. Part I, World Scientific, 1998; Part II, World Scientific, 2001. [Google Scholar]
- V.S. Afraimovich, L.P. Shilnikov. On small periodic perturbations of autonomous systems. Soviet Math., Dokl., 15 (1974), 206–211. [Google Scholar]
- V.S. Afraimovich, L.P. Shilnikov. On some global bifurcations connected with the disappearance of saddle-node fixed point. Soviet. Math., Dokl.. 15 (1974), 1761–1765. [Google Scholar]
- V.S. Afraimovich, L.P. Shilnikov. The ring principle in problems of interaction between two self-oscillating systems. J. Appl. Math. Mech., 41 (1977), 632–641 [CrossRef] [Google Scholar]
- J.H. Curry, J.A. Yorke. A transition from Hopf bifurcation to chaos: computer experiments with maps in R2. In The Structure of Attractors in Dynamical Systems, eds. J.C. Martin, N.G. Markley, W. Perrizo, Lecture Notes Math., 668, Springer, Berlin, 1978, 48–66. [Google Scholar]
- D.G. Aronson, M.A. Chory, R.P. Mcgehee, G.R. Hall. Bifurcation from an invariant circle for two-parameter families of maps of the plane. Commun. Math. Phys., 83 (1982), 303–354. [CrossRef] [Google Scholar]
- V.S. Afraimovich, L.P. Shilnikov. On invariant two-dimensional tori, their breakdown and stochasticity. Methods of the Qualitative Theory of Differential Equations, Gorky, 1983, 3–26 [English translation in: Amer. Math. Soc. Transl., 149 (1991), 201–212]. [Google Scholar]
- A. Shilnikov, L. Shilnikov, D. Turaev. On some mathematical topics in classical synchronization. Bifurcation and Chaos, 14 (2004), 2143–2160. [CrossRef] [Google Scholar]
- A.S. Gonchenko, S.V. Gonchenko, L.P. Shilnikov. Towards scenarios of chaos appearance in three-dimensional maps. Rus. J. Nonlinear Dynamics, 8 (2012), 3–28. [Google Scholar]
- A.V. Borisov, A.Yu. Jalnine, S.P. Kuznetsov, I.R. Sataev, J.V. Sedova. Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback. Regul. Chaotic Dyn., 17 (2012), 512–532. [Google Scholar]
- C. Bonatti. C1-generic dynamics: tame and wild behaviour. Proceedings of the ICM, Beijing 2002, V. 3, 279–294. [Google Scholar]
- C. Bonatti, L. Diaz, E.R. Pujals. A C1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources. Ann. Math., 158 (2003), 355–418. [CrossRef] [Google Scholar]
- C. Bonatti, L. Diaz, M. Viana. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective. Encyclopaedia of Mathematical Sciences, V. 102, Springer, 2005. [Google Scholar]
- C. Morales, E.R. Pujals. Singular strange attractors on the boundary of Morse–Smale systems. Ann. Sci. Ecole Norm. Sup., 30 (1997), 693–717. [Google Scholar]
- V. Araujo, M.J. Pacifico. Three-Dimensional Flows. Springer, 2010. [Google Scholar]
- S. Luzzatto, I. Melbourne, F. Paccaut. The Lorenz attractor is mixing. Comm. Math. Phys., 260 (2005), 393–401. [CrossRef] [MathSciNet] [Google Scholar]
- Ya. B. Pesin. Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Th. Dyn. Sys., 12 (1992), 123–151. [Google Scholar]
- E.A. Sataev. Invariant measures for hyperbolic maps with singularities. Russ. Math. Surv., 47 (1992), 191–251. [CrossRef] [Google Scholar]
- V.S. Afraimovich, N.I. Chernov, E.A. Sataev. Statistical properties of 2-D generalized hyperbolic attractors. Chaos 5 (1995), 238–252. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- C. Bonatti, A. Pumarino, M. Viana. Lorenz attractors with arbitrary expanding dimension. C.R. Acad. Sci. Paris, 325-I (1997), 883–888. [CrossRef] [Google Scholar]
- J. Auslander, P. Seibert. Prolongations and stability in dynamical systems. Ann. Inst. Forier., Genoble, 14 (1964), 237–268. [CrossRef] [Google Scholar]
- J. Auslander, N.P. Bhatia, P. Seibert. Attractors in dynamical systems. Bol. Soc. Mat. Mex., 9 (1964), 55–66. [Google Scholar]
- J. Milnor. On the concept of attractor. Comm. Math. Phys., 99 (1985), 177–195; Correction and remarks. Comm. Math. Phys., 102 (1985), 517–519. [Google Scholar]
- A. Gorodetski, Yu. Ilyashenko. Minimal and strange attractors. Bifurcation and Chaos, 6 (1996), 1177–1183. [CrossRef] [Google Scholar]
- C. Robinson. What is a Chaotic Attractor? Qualitative Theory Dyn. Sys., 7 (2008), 227–236. [CrossRef] [Google Scholar]
- C. Conley.Isolated Invariant Sets and the Morse Index. CBMS Regional Conference Series Math., 38 (1978), Am. Math. Soc., Providence RI. [Google Scholar]
- D. Ruelle. Small random perturbations of dynamical systems and the definition of attractors. Comm. Math. Phys., 82 (1981), 137–151. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hurley. Attractors: persistence and density of their basins. Trans. Amer. Math. Soc., 269 (1982), 247–271. [CrossRef] [MathSciNet] [Google Scholar]
- V.A. Dobrynsky, A.N. Sharkovsky. Genericity of the dynamical systems, almost all trajectories of which are stable underconstantly acting perturbations. Soviet. Math. Dokl., 211 (1973). [Google Scholar]
- E.A. Sataev. Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type. Sb. Math., 196 (2005), 561–594. [CrossRef] [MathSciNet] [Google Scholar]
- R. Bamon, J. Kiwi, J. Rivera. Wild Lorenz like attractors. Preprint (2005), arXiv:math/0508045. [Google Scholar]
- L.J. Diaz, J. Rocha. Nonconnected heteroclinic cycles: bifurcation and stability. Nonlinearity, 5 (1992), 1315–1341. [CrossRef] [Google Scholar]
- L.J. Diaz. Persistence of cycles and nonhyperbolic dynamics at heteroclinic bifurcations. Nonlinearity, 8 (1995), 693–713. [CrossRef] [Google Scholar]
- Ch. Bonatti, L.J. Diaz. Persistent nonhyperbolic transitive diffeomorphisms. Ann. Math., 143 (1996), 367–396. [CrossRef] [Google Scholar]
- C. Bonatti, L.J. Diaz, E. Pujals, J. Rocha. Robust transitivity and heterodimensional cycles. Asterisque, 286 (2003), 187–222. [Google Scholar]
- Ch. Bonatti, L.J. Diaz. Robust heterodimensional cycles and C1-generic dynamics. J. Inst. of Math. Jussieu, 7 (2008), 469–525. [CrossRef] [MathSciNet] [Google Scholar]
- L.J. Diaz, A. Gorodetski. Non-hyperbolic invariant measures for non-hyprerbolic homoclinic classes. Ergod. Th. Dyn. Sys., 29 (2009), 479–513. [Google Scholar]
- L.P. Silnikov. Structure of the neighborhood of a homoclinic tube of an invariant torus. Sov. Math. Dokl., 9 (1968), 624–628. [Google Scholar]
- V.S. Afrajmovich, L.P. Shil’nikov. On a bifurcation of codimension 1 leading to the appearance of a countable set of tori. Sov. Math. Dokl., 25 (1982), 101–105. [Google Scholar]
- A. Gorodetski, Yu. Ilyashenko. Some new robust properties of invariant sets and attractors of dynamical systems. Functional Analysis and Applications, 33 (1999), 16–30. [MathSciNet] [Google Scholar]
- A. Gorodetski, Yu. Ilyashenko. Some properties of skew products over the horseshoe and solenoid. Proc. Steklov Inst. Math., 231 (2000), 96–118. [Google Scholar]
- A. Gorodetski, Yu. Ilyashenko, V. Kleptsyn, M. Nalskij. Non-removable zero Lyapunov exponent. Functional Analysis and Applications, 39 (2005), 27–38. [MathSciNet] [Google Scholar]
- V.N. Pisarevsky, A. Shilnikov, D. Turaev. Asymptotic normal forms for equilibria with a triplet of zero characteristic exponents in systems with symmetry. Regul. Chaotic Dyn., 2 (1998), 19–27. [CrossRef] [Google Scholar]
- L.P. Shilnikov. The theory of bifurcations and quasiattractors. Russ. Math. Survey, 36[4] (1981), 240–241. [CrossRef] [Google Scholar]
- C. Robinson. Homoclinic bifurcation to a transitive attractor of the Lorenz type. Nonlinearity, 2 (1989), 495–518; II. SIAM J. Math. Anal., 23 (1992), 1255–1268. [CrossRef] [Google Scholar]
- M. Rychlic. Lorenz attractors through Shilnikov type bifurcation. Ergod. Th. Dyn. Sys., 10 (1990), 793–821. [Google Scholar]
- G. Tigan, D. Turaev. Analytical search for homoclinic bifurcations in Morioka-Shimizu model. Physica D, 240 (2011), 985–989. [CrossRef] [Google Scholar]
- V.V. Bykov. On the structure of a neighborhood of a separatrix contour with a saddle-focus. Methods of the Qualitative Theory of Differencial Equations, Gorky, 1978, 3–32. [Google Scholar]
- V.V. Bykov. On bifurcations of dynamical systems close to systems with a separatrix contour containing a saddle-focus. Methods of the Qualitative Theory of Differencial Equations, Gorky, 1980, 44–72. [Google Scholar]
- V.V. Bykov. The bifurcations of separatrix contours and chaos. Physica D, 62(1993), 290–299. [CrossRef] [Google Scholar]
- N.V. Petrovskaya, V.I. Yudovich. Homoclinic loops of the Saltzman-Lorenz system. Methods of qualitative theory of differential equations, Gorky, 1980, 73–83. [Google Scholar]
- V.V. Bykov, A.L. Shilnikov. On the boundaries of the domain of existence of the Lorenz attractor. Methods of qualitative theory and bifurcation theory, Gorky, 1989, 151–159 [English translation in Selecta Math. Soviet., 11 (1992), 375–382]. [Google Scholar]
- V.S. Afraimovich, V.V. Bykov, L.P. Shilnikov. On the existence of stable periodic orbits in the Lorenz model. Russ. Math. Survey, 35[4] (1980), 164–165. [Google Scholar]
- A. Chenciner. Bifurcations de points fixes elliptiques. I. Courbes invariantes. IHES Publ. Math., 61 (1985), 67–127; II. Orbites periodiques et ensembles de Cantor invariants. Invent. Math., 80 (1985), 81–106; III. Orbites periodiques de “petites” periodes et elimination resonante des couples de courbes invariantes. IHES Publ. Math., 66 (1987), 5–91. [CrossRef] [Google Scholar]
- J.E. Los. Nonnormally hyperbolic invariant curves for maps in R3 and doubling bifurcation. Nonlinearity, 2 (1989), 149–174. [CrossRef] [Google Scholar]
- H.W. Broer, G.B. Huitema, F. Takens. Unfoldings of quasi-periodic tori. Mem. AMS, 83 (1990), 1–82. [Google Scholar]
- B.L.J. Braaksma, H.W. Broer, G.B. Huitema. Toward a quasi-periodic bifurcation theory. Mem. AMS, 83 (1990), 83-175. [Google Scholar]
- A. Arneodo, P.H. Coullet, E.A. Spiegel. Cascade of period doublings of tori. Phys. Lett. A, 94 (1983), 1–5. [CrossRef] [Google Scholar]
- V. Franceschini. Bifurcations of tori and phase locking in a dissipative system of differential equations. Physica D, 6 (1983), 285–304. [CrossRef] [Google Scholar]
- V.S. Anishchenko, V.V. Astakhov, T.E. Letchford, M.A. Safonova. Structure of the quasihyperbolic stochasticity in an inertial self-excited oscillator. Radiophysics and Quantum Electronics, 26 (1983), 619–628. [CrossRef] [Google Scholar]
- V.S. Anishenko. Complex oscillations in simple systems. Nauka, Moscow, 1990. [Google Scholar]
- K. Kaneko. Collapse of Tori and Genesis of Chaos in Dissipative Systems. World Scientific, Singapore, 1986. [Google Scholar]
- C. Bonatti, Y. Shi, Robustly transitive attractor derived from Lorenz, in preparation. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.