The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
J. C. Tzou , A. Bayliss , B.J. Matkowsky , V.A. Volpert
Math. Model. Nat. Phenom., 6 1 (2011) 87-118
Published online: 2010-06-09
This article has been cited by the following article(s):
16 articles
Breathers and mixed oscillatory states near a Turing–Hopf instability in a two–component reaction–diffusion system
Fahad Al Saadi, Edgar Knobloch, Alexander Meiners and Hannes Uecker Physica D: Nonlinear Phenomena 472 134482 (2025) https://doi.org/10.1016/j.physd.2024.134482
Time-dependent localized patterns in a predator-prey model
Fahad Al Saadi, Edgar Knobloch, Mark Nelson and Hannes Uecker Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (4) (2024) https://doi.org/10.1063/5.0197808
SPATIOTEMPORAL DYNAMICS OF A DIFFUSIVE LESLIE-TYPE PREDATOR–PREY MODEL WITH BEDDINGTON–DEANGELIS FUNCTIONAL RESPONSE
YAN LI, LINYAN ZHANG, DAGEN LI and HONG-BO SHI Journal of Biological Systems 28 (03) 785 (2020) https://doi.org/10.1142/S0218339020500175
Turing Instability and Pattern Formation in a Strongly Coupled Diffusive Predator–Prey System
Guangping Hu and Zhaosheng Feng International Journal of Bifurcation and Chaos 30 (08) 2030020 (2020) https://doi.org/10.1142/S0218127420300207
Pattern Dynamics in a Predator–Prey Model with Schooling Behavior and Cross-Diffusion
Wen Wang, Shutang Liu, Zhibin Liu and Da Wang International Journal of Bifurcation and Chaos 29 (11) 1950146 (2019) https://doi.org/10.1142/S0218127419501463
Patterns induced by super cross-diffusion in a predator-prey system with Michaelis–Menten type harvesting
Biao Liu, Ranchao Wu and Liping Chen Mathematical Biosciences 298 71 (2018) https://doi.org/10.1016/j.mbs.2018.02.002
Localized stationary and traveling reaction-diffusion patterns in a two-layerA+B→oscillator system
M. A. Budroni and A. De Wit Physical Review E 93 (6) (2016) https://doi.org/10.1103/PhysRevE.93.062207
Instability in reaction-superdiffusion systems
Reza Torabi and Zahra Rezaei Physical Review E 94 (5) (2016) https://doi.org/10.1103/PhysRevE.94.052202
Spatiotemporal Dynamics of a Diffusive Leslie–Gower Predator–Prey Model with Ratio-Dependent Functional Response
Hong-Bo Shi, Shigui Ruan, Ying Su and Jia-Fang Zhang International Journal of Bifurcation and Chaos 25 (05) 1530014 (2015) https://doi.org/10.1142/S0218127415300141
The Stability and Slow Dynamics of Two-Spike Patterns for a Class of Reaction-Diffusion System
Y. Nec, M.J. Ward, L. Lerman, et al. Mathematical Modelling of Natural Phenomena 8 (5) 206 (2013) https://doi.org/10.1051/mmnp/20138513
Fronts in anomalous diffusion–reaction systems
V. A. Volpert, Y. Nec and A. A. Nepomnyashchy Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371 (1982) 20120179 (2013) https://doi.org/10.1098/rsta.2012.0179
The stability of localized spikes for the 1-D Brusselator reaction–diffusion model
J. C. TZOU, Y. NEC and M. J WARD European Journal of Applied Mathematics 24 (4) 515 (2013) https://doi.org/10.1017/S0956792513000089
Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model
J. C. Tzou, Y.-P. Ma, A. Bayliss, B. J. Matkowsky and V. A. Volpert Physical Review E 87 (2) (2013) https://doi.org/10.1103/PhysRevE.87.022908
An Explicitly Solvable Nonlocal Eigenvalue Problem and the Stability of a Spike for a Sub-Diffusive Reaction-Diffusion System
Y. Nec, M. J. Ward, A. Nepomnyashchy and V. Volpert Mathematical Modelling of Natural Phenomena 8 (2) 55 (2013) https://doi.org/10.1051/mmnp/20138205
Turing pattern formation in the Brusselator system with nonlinear diffusion
G. Gambino, M. C. Lombardo, M. Sammartino and V. Sciacca Physical Review E 88 (4) (2013) https://doi.org/10.1103/PhysRevE.88.042925
Stationary and slowly moving localised pulses in a singularly perturbed Brusselator model
J. C. TZOU, A. BAYLISS, B. J. MATKOWSKY and V. A. VOLPERT European Journal of Applied Mathematics 22 (5) 423 (2011) https://doi.org/10.1017/S0956792511000179