Free Access
Issue
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 87 - 118
DOI https://doi.org/10.1051/mmnp/20116105
Published online 09 June 2010
  1. P. Assemat, A. Bergeon, E. Knobloch. Spatially localized states in Marangoni convection in binary mixtures. Fluid Dynamics Research 40 (2008), 852-876. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Bensimon, B.I. Shraiman, V. Croquette. Nonadiabatic effects in convection. Phys. Rev. A38 (1988), 5461-5464. [Google Scholar]
  3. J. Burke, E. Knobloch. Localized states in the generalized Swift-Hohenberg equation. Phys. Rev. E73 (2006), art. 56211. [Google Scholar]
  4. J. Burke, E. Knobloch. Homoclinic snaking: structure and stability Chaos 17 (2007), art. 037102. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. E.J. Crampin, E.A. Gaffney, P.K. Maini. Reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bull. Math. Biol., 61 (1999), 1093-1120. [CrossRef] [PubMed] [Google Scholar]
  6. A. De Wit. Spatial patterns and spatiotemporal dynamics in chemical systems. Adv. Chem. Phys., 109 (1999), 435–513. [CrossRef] [Google Scholar]
  7. A. De Wit, D. Lima, G. Dewel, P. Borckmans. Spatiotemporal dynamics near a codimension-two point. Phys. Rev. E54 (1996), 261–271. [Google Scholar]
  8. A.A. Golovin, B.J. Matkowsky, V.A. Volpert. Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Math., 69 (2008), 251–272. [CrossRef] [MathSciNet] [Google Scholar]
  9. B.A. Malomed, A.A. Nepomnyashchy, M.I. Tribelsky. Domain boundaries in convection patterns. Phys. Rev. A42 (1990), 7244-7263. [Google Scholar]
  10. R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), No. 1, 1–77. [NASA ADS] [CrossRef] [Google Scholar]
  11. Y. Nec, A.A. Nepomnyashchy, A.A. Golovin. Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations. EPL, 82 (2008), 58003. [CrossRef] [EDP Sciences] [Google Scholar]
  12. K.B. Oldham, J. Spanier. The fractional calculus. Academic Press, New York, 1974. [Google Scholar]
  13. Y. Pomeau. Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D23 (1986), 3-11. [Google Scholar]
  14. J.C. Tzou, B.J. Matkowsky, V.A. Volpert. Interaction of Turing and Hopf modes in the superdiffusive Brusselator model. Appl. Math. Lett. 22 (2009), 1432–1437. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Yan, M. Dolnik, A.M. Zhabotinsky, I.R. Epstein. Pattern formation arising from interaction between Turing and wave instabilities. J. Chem. Phys., 117 (2002), 7259–7265. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.