Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
Page(s) 62 - 86
Published online 09 June 2010
  1. D.M. Anderson, G.B. McFadden, A.A. Wheeler. Diffuse-Interface methods in fluid mechanics. Ann. Rev. Fluid Mech., 30 (1998), 139–165. [CrossRef] [Google Scholar]
  2. L.K. Antanovskii. Microscale theory of surface tension. Phys. Rev. E, 54 (1996), 6285–6290. [CrossRef] [Google Scholar]
  3. D. Bandyopadhyay, R. Gulabani, A. Sharma. Stability and dynamics of bilayers. Ind. Eng. Chem. Res., 44 (2005), 1259–1272. [Google Scholar]
  4. K.-J. Bathe. Finite element procedures. Prentice-Hall, New Jersey, 2nd edition, 1995. [Google Scholar]
  5. K. Binder. Spinodal decomposition in confined geometry. J. Non-Equilib. Thermodyn., 23 (1998), 1–44. [Google Scholar]
  6. L. Brusch, H. Kühne, U. Thiele, M. Bär. Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening. Phys. Rev. E, 66 (2002), 011602. [CrossRef] [Google Scholar]
  7. J.W. Cahn, J.E. Hilliard. Free energy of a nonuniform System. 1. Interfacual free energy. J. Chem. Phys., 28 (1958), 258–267. [CrossRef] [Google Scholar]
  8. H.P. Fischer, P. Maass, W. Dieterich. Novel surface modes in spinodal decomposition. Phys. Rev. Lett., 79 (1997), 893–896. [CrossRef] [Google Scholar]
  9. H.P. Fischer, P. Maass, W. Dieterich. Diverging time and length scales of spinodal decomposition modes in thin films. Europhys. Lett., 42 (1998), 49–54. [Google Scholar]
  10. L.S. Fisher, A.A. Golovin. Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior. J. Colloid Interface Sci., 291 (2005), 515–528. [CrossRef] [PubMed] [Google Scholar]
  11. L.S. Fisher, A.A. Golovin. Instability of a two-layer thin liquid film with surfactants: Dewetting waves. J. Colloid Interface Sci., 307 (2007), 203–214. [CrossRef] [PubMed] [Google Scholar]
  12. O.A. Frolovskaya, A.A. Nepomnyashchy, A. Oron, A.A. Golovin. Stability of a two-layer binary-fluid system with a diffuse interface. Phys. Fluids, 20 (2008), 112105. [CrossRef] [Google Scholar]
  13. M. Geoghegan, G. Krausch. Wetting at polymer surfaces and interfaces. Prog. Polym. Sci., 28 (2003), 261–302. [CrossRef] [Google Scholar]
  14. A.A. Golovin, S.H. Davis, A.A. Nepomnyashchy. A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth. Physica D, 122 (1998), 202–230. [CrossRef] [MathSciNet] [Google Scholar]
  15. A.A. Golovin, A.A. Nepomnyashchy, S.H. Davis, M.A. Zaks. Convective Cahn-Hilliard models: From coarsening to roughening. Phys. Rev. Lett., 86 (2001), 1550–1553. [CrossRef] [PubMed] [Google Scholar]
  16. L.V. Govor, J. Parisi, G.H. Bauer, G. Reiter. Instability and droplet formation in evaporating thin films of a binary solution. Phys. Rev. E, 71 (2005), 051603. [CrossRef] [Google Scholar]
  17. P.C. Hohenberg, B.I. Halperin. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49 (1977), 435–479. [CrossRef] [Google Scholar]
  18. K.D. Jandt, J. Heier, F.S. Bates, E.J. Kramer. Transient surface roughening of thin films of phase separating polymer mixtures. Langmuir, 12 (1996), 3716–3720. [CrossRef] [Google Scholar]
  19. D. Jasnow, J. Viñals. Coarse-grained description of thermo-capillary flow. Phys. Fluids, 8 (1996), 660–669. [CrossRef] [Google Scholar]
  20. R.A.L. Jones, L.J. Norton, E.J. Kramer, F.S. Bates, P. Wiltzius. Surface-directed spinodal decomposition. Phys. Rev. Lett., 66 (1991), 1326–1329. [CrossRef] [PubMed] [Google Scholar]
  21. S. Kalliadasis, U. Thiele (eds.). Thin Films of Soft Matter. Springer, Wien / New York, CISM 490, 2007. [Google Scholar]
  22. K. Kargupta, R. Konnur, A. Sharma. Instability and pattern formation in thin liquid films on chemically heterogeneous substrates. Langmuir, 16 (2000), 10243–10253. [CrossRef] [Google Scholar]
  23. K. Kargupta, A. Sharma. Templating of thin films induced by dewetting on patterned surfaces. Phys. Rev. Lett., 86 (2001), 4536–4539. [CrossRef] [PubMed] [Google Scholar]
  24. A. Karim, J.F. Douglas, B.P. Lee, S.C. Glotzer, J.A. Rogers, R.J. Jackman, E.J. Amis, G.M. Whitesides. Phase separation of ultrathin polymer-blend films on patterned substrates. Phys. Rev. E, 57 (1998), R6273–R6276. [CrossRef] [Google Scholar]
  25. R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl, W. Dieterich. Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions. Comp. Phys. Comm., 133 (2001), 139–157. [Google Scholar]
  26. T. Kerle, J. Klein, R. Yerushalmi-Rozen. Accelerated rupture at the liquid/liquid interface. Langmuir, 18 (2002), 10146–10154. [CrossRef] [Google Scholar]
  27. J.S. Langer. An introduction to the kinetics of first-order phase transitions. in ’Solids far from Equilibrium’ (ed. by Godreche), Cambridge University Press, (1992), 297–363. [Google Scholar]
  28. J. Lowengrub, L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 454 (1998), 2617–2654. [Google Scholar]
  29. S. Madruga, U. Thiele. Decomposition driven interface evolution for layers of binary mixtures: II. Influence of convective transport on linear stability. Phys. Fluids, 21 (2009), 062104. [CrossRef] [Google Scholar]
  30. S. Mechkov, M. Rauscher, S. Dietrich. Stability of liquid ridges on chemical micro- and nanostripes. Phys. Rev. E, 77 (2008), 061605. [CrossRef] [Google Scholar]
  31. P. Müller-Buschbaum, E. Bauer, S. Pfister, S.V. Roth, M. Burghammer, C. Riekel, C. David, U. Thiele. Creation of multi-scale stripe-like patterns in thin polymer blend films. Europhys. Lett., 73 (2006), 35–41. [CrossRef] [Google Scholar]
  32. G. Nisato, B.D. Ermi, J.F. Douglas, A. Karim. Excitation of surface deformation modes of a phase-separating polymer blend on a patterned substrate. Macromolecules, 32 (1999), 2356–2364. [CrossRef] [Google Scholar]
  33. A. Oron, S.H. Davis, S.G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931–980. [CrossRef] [Google Scholar]
  34. L.M. Pismen. Mesoscopic hydrodynamics of contact line motion. Colloid Surf. A-Physicochem. Eng. Asp., 206 (2002), 11–30. [Google Scholar]
  35. L.M. Pismen, Y. Pomeau. Disjoining potential and spreading of thin liquid layers in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E, 62 (2000), 2480–2492. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele. Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E, 70 (2004), 025201. [Google Scholar]
  37. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele. Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys., 122 (2005), 224711. [CrossRef] [PubMed] [Google Scholar]
  38. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele. 3D Surface Patterns in liquid two-layer films. Europhys. Lett., 74 (2006), 665–671. [CrossRef] [Google Scholar]
  39. U. Thiele, L. Brusch, M. Bestehorn, M. Bär. Modelling thin-film dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations. Eur. Phys. J. E, 11 (2003), 255–271. [CrossRef] [EDP Sciences] [Google Scholar]
  40. U. Thiele, S. Madruga, L. Frastia. Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states. Phys. Fluids, 19 (2007), 122106. [CrossRef] [Google Scholar]
  41. N. Vladimirova, A. Malagoli, R. Mauri. Diffusion-driven phase separation of deeply quenched mixtures. Phys. Rev. E, 58 (1998), 7691–7699. [CrossRef] [Google Scholar]
  42. N. Vladimirova, A. Malagoli, R. Mauri. Two-dimensional model of phase segregation in liquid binary mixtures. Phys. Rev. E, 60 (1999), 6968–6977. [CrossRef] [Google Scholar]
  43. H. Wang, R.J. Composto. Thin film polymer blends undergoing phase separation and wetting: Identification of early, intermediate, and late stages. J. Chem. Phys., 113 (2000), 10386–10397. [CrossRef] [Google Scholar]
  44. H. Wang, R.J. Composto. Understanding morphology evolution and roughening in phase-separating thin-film polymer blends. Europhys. Lett., 50 (2000), 622–627. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.