The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
G. Nadin , L. Rossi , L. Ryzhik , B. Perthame
Math. Model. Nat. Phenom., 8 3 (2013) 33-41
Published online: 2013-06-12
This article has been cited by the following article(s):
33 articles
Precise Asymptotic Spreading Behavior for an Epidemic Model with Nonlocal Dispersal
Jong-Shenq Guo, Amy Ai Ling Poh and Masahiko Shimojo Taiwanese Journal of Mathematics 28 (3) (2024) https://doi.org/10.11650/tjm/240101
Nonlocal Reaction–Diffusion Equations in Biomedical Applications
M. Banerjee, M. Kuznetsov, O. Udovenko and V. Volpert Acta Biotheoretica 70 (2) (2022) https://doi.org/10.1007/s10441-022-09436-4
Existence and Dynamics of Strains in a Nonlocal Reaction-Diffusion Model of Viral Evolution
Nikolai Bessonov, Gennady Bocharov, Andreas Meyerhans, Vladimir Popov and Vitaly Volpert SIAM Journal on Applied Mathematics 81 (1) 107 (2021) https://doi.org/10.1137/19M1282234
On pushed wavefronts of monostable equation with unimodal delayed reaction
Karel Hasík, Jana Kopfová, Petra Nábělková and Sergei Trofimchuk Discrete & Continuous Dynamical Systems 41 (12) 5979 (2021) https://doi.org/10.3934/dcds.2021103
Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains
Nikolai Bessonov, Gennady Bocharov, Andreas Meyerhans, Vladimir Popov and Vitaly Volpert Mathematics 8 (1) 117 (2020) https://doi.org/10.3390/math8010117
The spreading speed of an SIR epidemic model with nonlocal dispersal
Jong-Shenq Guo, Amy Ai Ling Poh and Masahiko Shimojo Asymptotic Analysis 120 (1-2) 163 (2020) https://doi.org/10.3233/ASY-191584
Existence and uniqueness of monotone wavefronts in a nonlocal resource-limited model
Elena Trofimchuk, Manuel Pinto and Sergei Trofimchuk Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (5) 2462 (2020) https://doi.org/10.1017/prm.2019.31
The Bramson delay in the non-local Fisher-KPP equation
Emeric Bouin, Christopher Henderson and Lenya Ryzhik Annales de l'Institut Henri Poincaré C, Analyse non linéaire 37 (1) 51 (2020) https://doi.org/10.1016/j.anihpc.2019.07.001
Existence of bistable waves for a nonlocal and nonmonotone reaction-diffusion equation
Sergei Trofimchuk and Vitaly Volpert Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (2) 721 (2020) https://doi.org/10.1017/prm.2018.164
Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities
Sergei Trofimchuk and Vitaly Volpert Nonlinearity 32 (7) 2593 (2019) https://doi.org/10.1088/1361-6544/ab0e23
A simple approach to the wave uniqueness problem
Abraham Solar and Sergei Trofimchuk Journal of Differential Equations 266 (10) 6647 (2019) https://doi.org/10.1016/j.jde.2018.11.012
The spreading speed of solutions of the non-local Fisher–KPP equation
Sarah Penington Journal of Functional Analysis 275 (12) 3259 (2018) https://doi.org/10.1016/j.jfa.2018.10.002
Travelling waves for a non-monotone bistable equation with delay: existence and oscillations
Matthieu Alfaro, Arnaud Ducrot and Thomas Giletti Proceedings of the London Mathematical Society 116 (4) 729 (2018) https://doi.org/10.1112/plms.12092
A logistic equation with nonlocal interactions
Luis Caffarelli, Serena Dipierro and Enrico Valdinoci Kinetic & Related Models 10 (1) 141 (2017) https://doi.org/10.3934/krm.2017006
Doubly nonlocal reaction–diffusion equations and the emergence of species
M. Banerjee, V. Vougalter and V. Volpert Applied Mathematical Modelling 42 591 (2017) https://doi.org/10.1016/j.apm.2016.10.041
Super-linear spreading in local and non-local cane toads equations
Emeric Bouin, Christopher Henderson and Lenya Ryzhik Journal de Mathématiques Pures et Appliquées 108 (5) 724 (2017) https://doi.org/10.1016/j.matpur.2017.05.015
The Bramson logarithmic delay in the cane toads equations
Emeric Bouin, Christopher Henderson and Lenya Ryzhik Quarterly of Applied Mathematics 75 (4) 599 (2017) https://doi.org/10.1090/qam/1470
Traveling waves in a nonlocal, piecewise linear reaction–diffusion population model
E A Autry, A Bayliss and V A Volpert Nonlinearity 30 (8) 3304 (2017) https://doi.org/10.1088/1361-6544/aa7b95
Traveling waves for a lattice dynamical system arising in a diffusive endemic model
Yan-Yu Chen, Jong-Shenq Guo and François Hamel Nonlinearity 30 (6) 2334 (2017) https://doi.org/10.1088/1361-6544/aa6b0a
Monotone waves for non-monotone and non-local monostable reaction–diffusion equations
Elena Trofimchuk, Manuel Pinto and Sergei Trofimchuk Journal of Differential Equations 261 (2) 1203 (2016) https://doi.org/10.1016/j.jde.2016.03.039
Traveling waves for the nonlocal diffusive single species model with Allee effect
Bang-Sheng Han, Zhi-Cheng Wang and Zhaosheng Feng Journal of Mathematical Analysis and Applications 443 (1) 243 (2016) https://doi.org/10.1016/j.jmaa.2016.05.031
Traveling wave solutions in a nonlocal reaction-diffusion population model
Bang-Sheng Han and Zhi-Cheng Wang Communications on Pure and Applied Analysis 15 (3) 1057 (2016) https://doi.org/10.3934/cpaa.2016.15.1057
Traveling waves in the nonlocal KPP-Fisher equation: Different roles of the right and the left interactions
Karel Hasik, Jana Kopfová, Petra Nábělková and Sergei Trofimchuk Journal of Differential Equations 260 (7) 6130 (2016) https://doi.org/10.1016/j.jde.2015.12.035
Traveling wave solutions in a nonlocal reaction-diffusion population model
Bang-Sheng Han and Zhi-Cheng Wang Communications on Pure and Applied Analysis 15 (3) 1057 (2016) https://doi.org/10.3934/cpaa.2016.15.1069
Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach
Grégory Faye and Matt Holzer Journal of Differential Equations 258 (7) 2257 (2015) https://doi.org/10.1016/j.jde.2014.12.006
On bounded positive stationary solutions for a nonlocal Fisher–KPP equation
Franz Achleitner and Christian Kuehn Nonlinear Analysis: Theory, Methods & Applications 112 15 (2015) https://doi.org/10.1016/j.na.2014.09.004
Preface to the Issue Nonlocal Reaction-Diffusion Equations
M. Alfaro, N. Apreutesei, F. Davidson, et al. Mathematical Modelling of Natural Phenomena 10 (6) 1 (2015) https://doi.org/10.1051/mmnp/201510601
Bistable travelling waves for nonlocal reaction diffusion equations
Matthieu Alfaro, Jérôme Coville and Gaël Raoul Discrete & Continuous Dynamical Systems - A 34 (5) 1775 (2014) https://doi.org/10.3934/dcds.2014.34.1775
On the existence of non-monotone non-oscillating wavefronts
Anatoli Ivanov, Carlos Gomez and Sergei Trofimchuk Journal of Mathematical Analysis and Applications 419 (1) 606 (2014) https://doi.org/10.1016/j.jmaa.2014.04.075
On the nonlocal Fisher–KPP equation: steady states, spreading speed and global bounds
François Hamel and Lenya Ryzhik Nonlinearity 27 (11) 2735 (2014) https://doi.org/10.1088/0951-7715/27/11/2735
Mathematics of Darwin’s Diagram
N. Bessonov, N. Reinberg, V. Volpert and A. Morozov Mathematical Modelling of Natural Phenomena 9 (3) 5 (2014) https://doi.org/10.1051/mmnp/20149302
Slowly oscillating wavefronts of the KPP-Fisher delayed equation
Karel Hasik and Sergei Trofimchuk Discrete & Continuous Dynamical Systems - A 34 (9) 3511 (2014) https://doi.org/10.3934/dcds.2014.34.3511
Asymptotic behaviour of travelling waves for the delayed Fisher–KPP equation
Arnaud Ducrot and Grégoire Nadin Journal of Differential Equations 256 (9) 3115 (2014) https://doi.org/10.1016/j.jde.2014.01.033