Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Precise Asymptotic Spreading Behavior for an Epidemic Model with Nonlocal Dispersal

Jong-Shenq Guo, Amy Ai Ling Poh and Masahiko Shimojo
Taiwanese Journal of Mathematics 28 (3) (2024)
https://doi.org/10.11650/tjm/240101

Existence and Dynamics of Strains in a Nonlocal Reaction-Diffusion Model of Viral Evolution

Nikolai Bessonov, Gennady Bocharov, Andreas Meyerhans, Vladimir Popov and Vitaly Volpert
SIAM Journal on Applied Mathematics 81 (1) 107 (2021)
https://doi.org/10.1137/19M1282234

On pushed wavefronts of monostable equation with unimodal delayed reaction

Karel Hasík, Jana Kopfová, Petra Nábělková and Sergei Trofimchuk
Discrete & Continuous Dynamical Systems 41 (12) 5979 (2021)
https://doi.org/10.3934/dcds.2021103

Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains

Nikolai Bessonov, Gennady Bocharov, Andreas Meyerhans, Vladimir Popov and Vitaly Volpert
Mathematics 8 (1) 117 (2020)
https://doi.org/10.3390/math8010117

The spreading speed of an SIR epidemic model with nonlocal dispersal

Jong-Shenq Guo, Amy Ai Ling Poh and Masahiko Shimojo
Asymptotic Analysis 120 (1-2) 163 (2020)
https://doi.org/10.3233/ASY-191584

Existence and uniqueness of monotone wavefronts in a nonlocal resource-limited model

Elena Trofimchuk, Manuel Pinto and Sergei Trofimchuk
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (5) 2462 (2020)
https://doi.org/10.1017/prm.2019.31

The Bramson delay in the non-local Fisher-KPP equation

Emeric Bouin, Christopher Henderson and Lenya Ryzhik
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 37 (1) 51 (2020)
https://doi.org/10.1016/j.anihpc.2019.07.001

Existence of bistable waves for a nonlocal and nonmonotone reaction-diffusion equation

Sergei Trofimchuk and Vitaly Volpert
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (2) 721 (2020)
https://doi.org/10.1017/prm.2018.164

Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities

Sergei Trofimchuk and Vitaly Volpert
Nonlinearity 32 (7) 2593 (2019)
https://doi.org/10.1088/1361-6544/ab0e23

Travelling waves for a non-monotone bistable equation with delay: existence and oscillations

Matthieu Alfaro, Arnaud Ducrot and Thomas Giletti
Proceedings of the London Mathematical Society 116 (4) 729 (2018)
https://doi.org/10.1112/plms.12092

A logistic equation with nonlocal interactions

Luis Caffarelli, Serena Dipierro and Enrico Valdinoci
Kinetic & Related Models 10 (1) 141 (2017)
https://doi.org/10.3934/krm.2017006

Doubly nonlocal reaction–diffusion equations and the emergence of species

M. Banerjee, V. Vougalter and V. Volpert
Applied Mathematical Modelling 42 591 (2017)
https://doi.org/10.1016/j.apm.2016.10.041

Super-linear spreading in local and non-local cane toads equations

Emeric Bouin, Christopher Henderson and Lenya Ryzhik
Journal de Mathématiques Pures et Appliquées 108 (5) 724 (2017)
https://doi.org/10.1016/j.matpur.2017.05.015

The Bramson logarithmic delay in the cane toads equations

Emeric Bouin, Christopher Henderson and Lenya Ryzhik
Quarterly of Applied Mathematics 75 (4) 599 (2017)
https://doi.org/10.1090/qam/1470

Traveling waves for a lattice dynamical system arising in a diffusive endemic model

Yan-Yu Chen, Jong-Shenq Guo and François Hamel
Nonlinearity 30 (6) 2334 (2017)
https://doi.org/10.1088/1361-6544/aa6b0a

Monotone waves for non-monotone and non-local monostable reaction–diffusion equations

Elena Trofimchuk, Manuel Pinto and Sergei Trofimchuk
Journal of Differential Equations 261 (2) 1203 (2016)
https://doi.org/10.1016/j.jde.2016.03.039

Traveling waves for the nonlocal diffusive single species model with Allee effect

Bang-Sheng Han, Zhi-Cheng Wang and Zhaosheng Feng
Journal of Mathematical Analysis and Applications 443 (1) 243 (2016)
https://doi.org/10.1016/j.jmaa.2016.05.031

Traveling wave solutions in a nonlocal reaction-diffusion population model

Bang-Sheng Han and Zhi-Cheng Wang
Communications on Pure and Applied Analysis 15 (3) 1057 (2016)
https://doi.org/10.3934/cpaa.2016.15.1057

Traveling waves in the nonlocal KPP-Fisher equation: Different roles of the right and the left interactions

Karel Hasik, Jana Kopfová, Petra Nábělková and Sergei Trofimchuk
Journal of Differential Equations 260 (7) 6130 (2016)
https://doi.org/10.1016/j.jde.2015.12.035

Traveling wave solutions in a nonlocal reaction-diffusion population model

Bang-Sheng Han and Zhi-Cheng Wang
Communications on Pure and Applied Analysis 15 (3) 1057 (2016)
https://doi.org/10.3934/cpaa.2016.15.1069

Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach

Grégory Faye and Matt Holzer
Journal of Differential Equations 258 (7) 2257 (2015)
https://doi.org/10.1016/j.jde.2014.12.006

On bounded positive stationary solutions for a nonlocal Fisher–KPP equation

Franz Achleitner and Christian Kuehn
Nonlinear Analysis: Theory, Methods & Applications 112 15 (2015)
https://doi.org/10.1016/j.na.2014.09.004

Preface to the Issue Nonlocal Reaction-Diffusion Equations

M. Alfaro, N. Apreutesei, F. Davidson, et al.
Mathematical Modelling of Natural Phenomena 10 (6) 1 (2015)
https://doi.org/10.1051/mmnp/201510601

Bistable travelling waves for nonlocal reaction diffusion equations

Matthieu Alfaro, Jérôme Coville and Gaël Raoul
Discrete & Continuous Dynamical Systems - A 34 (5) 1775 (2014)
https://doi.org/10.3934/dcds.2014.34.1775

On the existence of non-monotone non-oscillating wavefronts

Anatoli Ivanov, Carlos Gomez and Sergei Trofimchuk
Journal of Mathematical Analysis and Applications 419 (1) 606 (2014)
https://doi.org/10.1016/j.jmaa.2014.04.075

Slowly oscillating wavefronts of the KPP-Fisher delayed equation

Karel Hasik and Sergei Trofimchuk
Discrete & Continuous Dynamical Systems - A 34 (9) 3511 (2014)
https://doi.org/10.3934/dcds.2014.34.3511

Asymptotic behaviour of travelling waves for the delayed Fisher–KPP equation

Arnaud Ducrot and Grégoire Nadin
Journal of Differential Equations 256 (9) 3115 (2014)
https://doi.org/10.1016/j.jde.2014.01.033