Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 33 - 41
Published online 12 June 2013
  1. M. Alfaro, J. Coville. Rapid traveling waves in the nonlocal Fisher equation connect two unstable states. Appl. Math. Lett., 25:2095–2099, 2012. [Google Scholar]
  2. N. Apreutesei, N. Bessonov, V. Volpert, V. Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Disc. Cont. Dyn. Syst. B, 13(3):537–557, 2010. [Google Scholar]
  3. H. Berestycki, G. Nadin, B. Perthame, L. Ryzhik. The non-local Fisher-KPP equation: traveling waves and steady states. Nonlinearity, 22(12):2813–2844, 2009. [CrossRef] [Google Scholar]
  4. N. Britton. Spatial structures and periodic traveling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math., 50(6):1663–1688, 1990. [CrossRef] [Google Scholar]
  5. A. Doelman, B. Sandstede, A. Scheel, G. Schneider. The dynamics of modulated wave trains. Mem. Amer. Math. Soc., 199(934), 2009. [Google Scholar]
  6. J. Fang, X-Q. Zhao. Monotone wavefronts of the nonlocal Fisher-KPP equation. Nonlinearity, 24(11):3043–3054, 2011. [CrossRef] [Google Scholar]
  7. J-É Furter, M. Grinfeld. Local vs. nonlocal interactions in population dynamics. J. Math. Biol., 27(1):65–80, 1989. [CrossRef] [Google Scholar]
  8. S. Genieys, V. Volpert, P. Auger. Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Modelling Nat. Phenom., 1:65–82, 2006. [Google Scholar]
  9. A. Gomez, S. Trofimchuk. Monotone traveling wavefronts of the KPP-Fisher delayed equation. J. Diff. Eq., 250(4):1767–1787, 2011. [CrossRef] [Google Scholar]
  10. S. Gourley. Traveling front solutions of a nonlocal Fisher equation. J. Math. Biol., 41(3):272–284, 2000. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. M.K. Kwong, C. Ou. Existence and nonexistence of monotone traveling waves for the delayed Fisher equation. J. Diff. Eq., 249(3):728–745, 2010. [CrossRef] [Google Scholar]
  12. G. Nadin, B. Perthame, M. Tang. Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation. C. R. Math. Acad. Sci. Paris, 349(9-10):553–557, 2011. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Turing. The chemical basis of morphogenesis. Phil. Trans. Royal Soc. London. Serie B, Biol. Sc., 237(641):37–72, 1952. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.