Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
|
|
---|---|---|
Page(s) | 42 - 59 | |
DOI | https://doi.org/10.1051/mmnp/20138305 | |
Published online | 12 June 2013 |
- M. Aguerrea, S. Trofimchuk, G. Valenzuela. Uniqueness of fast travelling fronts in reaction-diffusion equations with delay. Proc. Royal Soc. A, 464 (2008), 2591–2608. [CrossRef] [Google Scholar]
- S. Ai. Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Diff. Equations, 232 (2007), 104–133. [CrossRef] [MathSciNet] [Google Scholar]
- D. G. Aronson, H. G. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve propagation. In Partial Differential Equations and Related Topics, volume 446 of Lectures Notes Math, 5–49. Springer, New York, 1975. [Google Scholar]
- D. G. Aronson, H. G. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math., 30 (1978), 33–76. [Google Scholar]
- F. Austerlitz, S. Mariette, N. Machon, P. H. Gouyon, B. Godelle. Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics, 154 (2000), 1309–1321. [PubMed] [Google Scholar]
- L. Berec, E. Angulo, F. Courchamp. Multiple Allee effects and population management. Trends Ecol. Evol., 22 (2007), 185–191. [CrossRef] [PubMed] [Google Scholar]
- J. Billingham, D. J. Needham. The development of traveling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form of traveling waves. Phil. Trans. Royal Soc. A, 334 (1991), 1–24. [CrossRef] [Google Scholar]
- M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc., 44 (1983). [Google Scholar]
- N. F. Britton. Reaction-Diffusion Equations and their Applications to Biology. Academic Press, London, 1986. [Google Scholar]
- J. P. Eckmann, C. E. Wayne. The nonlinear stability of front solutions for parabolic partial differential equations. Comm. Math. Phys., 161 (1994), 323–334. [CrossRef] [MathSciNet] [Google Scholar]
- T. Faria, S. Trofimchuk. Nonmonotone travelling waves in a single species reaction-diffusion equation with delay. J. Diff. Equations, 228 (2006), 357–376. [CrossRef] [Google Scholar]
- P. C. Fife. Mathematical Aspects of Reacting and Diffusing Systems, volume 28 of Lecture Notes in Biomathematics. Springer-Verlag, 1979. [Google Scholar]
- P. C. Fife, J. McLeod. The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal., 65 (1977), 335–361. [Google Scholar]
- J. Garnier, T. Giletti, F. Hamel, L. Roques. Inside dynamics of pulled and pushed fronts. J. Math. Pures Appl., 98 (2012), 428–449. [CrossRef] [Google Scholar]
- J. Garnier, L. Roques, F. Hamel. Success rate of a biological invasion in terms of the spatial distribution of the founding population. B. Math. Biol., 74 (2012), 453–473. [Google Scholar]
- A. Gomez, S. Trofimchuk. Monotone traveling wavefronts of the KPP-Fisher delayed equation. J. Diff. Equations, 250 (2011), 1767–1787. [Google Scholar]
- P. Grindrod. Theory and Applications of Reaction-Diffusion Equations. Clarendon Press, 1996. [Google Scholar]
- O. Hallatschek, D. R. Nelson. Gene surfing in expanding populations. Theor. Popul. Biol., 73 (2008), 158–170. [CrossRef] [PubMed] [Google Scholar]
- F. Hamel, J. Nolen, J.-M. Roquejoffre, L. Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Netw. Heterog. Media, In press (2013). [Google Scholar]
- K. Hasik, S. Trofimchuk. Slowly oscillating wavefronts of the KPP-Fisher delayed equation. arXiv, arXiv:1206.0484 (2012). [Google Scholar]
- A. L. Hodgkin, A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology, 117 (1952), 500–544. [Google Scholar]
- G. E. Hutchinson. Circular causal systems in ecology. Ann. New York Acad. Sci., 50 (1948), 221–246. [CrossRef] [Google Scholar]
- J. I. Kanel. Certain problems of burning-theory equations. Sov. Math. Doklady, 2 (1961), 48–51. [Google Scholar]
- K. Kobayashi. On the semilinear heat equations with time-lag. Hiroshima Math. J., 7 (1977), 459–472. [MathSciNet] [Google Scholar]
- A. N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou, Sér. Int. A, 1 (1937), 1–26. [Google Scholar]
- M. K. Kwong, J. Ou. Existence and nonexistence of monotone traveling waves for the delayed Fisher equation. J. Diff. Equations, 249 (2010), 728–745. [Google Scholar]
- K.-S. Lau. On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov. J. Diff. Equations, 59 (1985), 44–70. [CrossRef] [Google Scholar]
- M. A. Lewis, P. Kareiva. Allee dynamics and the spread of invading organisms. Theor. Popul. Biol., 43 (1993), 141–158. [CrossRef] [Google Scholar]
- M. A. Lewis, P. Van Den Driessche. Waves of extinction from sterile insect release. Math. Biosci., 116 (1993), 221–247. [CrossRef] [PubMed] [Google Scholar]
- X. Liang, X.-Q. Zhao. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math., 60 (2007), 1–40. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ma. Traveling waves for non-local delayed diffusion equations via auxiliary equations. J. Diff. Equations, 237 (2007), 259–277. [CrossRef] [Google Scholar]
- J. D. Murray. Mathematical Biology. Third Edition. Interdisciplinary Applied Mathematics 17, Springer-Verlag, New York, 2002. [Google Scholar]
- S. Pan. Asymptotic behavior of travelling fronts of the delayed Fisher equation. Nonlinear Anal. Real World Appl., 10 (2009), 1173–1182. [CrossRef] [Google Scholar]
- L. Roques, J. Garnier, F. Hamel, E K. Klein. Allee effect promotes diversity in traveling waves of colonization. Proc. Natl. Acad. Sci. USA, 109 (2012), 8828–8833. [Google Scholar]
- L. Roques, F. Hamel, J. Fayard, B. Fady, E K. Klein. Recolonisation by diffusion can generate increasing rates of spread. Theor. Popul. Biol., 77 (2010), 205–212. [CrossRef] [PubMed] [Google Scholar]
- D. H. Sattinger. On the stability of waves of nonlinear parabolic systems. Adv. Math., 22 (1976), 312–355. [CrossRef] [MathSciNet] [Google Scholar]
- D. H. Sattinger. Weighted norms for the stability of traveling waves. J. Diff. Equations, 25 (1977), 130–144. [CrossRef] [Google Scholar]
- K. W. Schaaf. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans. Amer. Math. Soc., 302 (1987), 587–615. [MathSciNet] [Google Scholar]
- N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution, Oxford: Oxford University Press, 1997. [Google Scholar]
- A. N. Stokes. On two types of moving front in quasilinear diffusion. Math. Biosci., 31 (1976), 307–315. [CrossRef] [Google Scholar]
- E. Trofimchuk, P. Alvarado, S. Trofimchuk. On the geometry of wave solutions of a delayed reaction-diffusion equation. J. Diff. Equations, 246 (2009), 1422–1444. [CrossRef] [Google Scholar]
- E. Trofimchuk, M. Pinto, S. Trofimchuk. Pushed traveling fronts in monostable equations with monotone delayed reaction. arXiv:1111.5161v1. [Google Scholar]
- K. Uchiyama. The behaviour of solutions of some non-linear diffusion equations for large time. J. Math. Kyoto Univ., 18 (1978), 453–508. [Google Scholar]
- M. O. Vlad, L. L. Cavalli-Sforza, J. Ross. Enhanced (hydrodynamic) transport induced by population growth in reaction-diffusion systems with application to population genetics. Proc. Natl. Acad. Sci. USA, 101 (2004), 10249–10253. [CrossRef] [Google Scholar]
- Z.-C. Wang, W.-T. Li, S. Ruan. Travelling wave fronts of reaction-diffusion systems with spatio-temporal delays. J. Diff. Equations, 222 (2006), 185–232. [CrossRef] [Google Scholar]
- Z.-C. Wang, W.-T. Li, S. Ruan. Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay. J. Diff. Equations, 238 (2007), 153–200. [CrossRef] [Google Scholar]
- J. Wu. Theory and Applications of Partial Functional Differential Equations, volume 119 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996. [Google Scholar]
- J. Wu, X. Zou. Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Diff. Equations, 13 (2001), 651–687. [CrossRef] [Google Scholar]
- X. Zou. Delay induced traveling wave fronts in reaction diffusion equations of fisher-kpp type. J. Comput. Appl. Math., 146 (2002), 309–321. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.