Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 60 - 77
Published online 12 June 2013
  1. X. Chen. Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Diff. Eq., 2(1997), 125–160. [Google Scholar]
  2. J. Fang, J. Wei, X.-Q. Zhao. Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system. J. Diff. Eq., 245(2008), 2749–2770. [CrossRef] [Google Scholar]
  3. J. Fang, X.-Q. Zhao. Monotone wavefronts for partially degenerate reaction-diffusion systems. J. Dyn. Diff. Eq., 21(2009), 663–680. [CrossRef] [Google Scholar]
  4. J. Fang, X.-Q. Zhao. Bistable traveling waves for monotone semiflows with applications. Journal of European Math. Soc., in press. [Google Scholar]
  5. M. Gyllenberg, G. F. Webb. A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol., 28(1990), 671–694. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. K. P. Hadeler. Quiescent phases and stability. Lin. Alg. Appl., 428(2008), 1620-1627. [CrossRef] [Google Scholar]
  7. K. P. Hadeler. Homogenerous systems with a quiescent phase. Math. Models Natur. Phenom., 3(2008), 115–125. [CrossRef] [EDP Sciences] [Google Scholar]
  8. K. P. Hadeler, M. A. Lewis. Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Can. Appl. Math. Q., 10(2002), 473-499. [MathSciNet] [Google Scholar]
  9. K. P. Hadeler, F. Lutscher. Quiescent phases with distributed exit times. Disc. Cont. Dyn. Sys.(Ser. B), 17(2012), 849–869. [CrossRef] [Google Scholar]
  10. W. Jäger, S. Krömker, B. Tang. Quiescence and transient growth dynamics in chemostat models. Math. Biosci., 119(1994), 225–239. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. X. Liang, X.-Q. Zhao. Asymptotic speeds of spread and traveling waves for monotone semiflow with applications. Comm. Pure Appl. Math., 60(2007), 1–40, Erratum: Comm. Pure Appl. Math., 61(2008), 137–138. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Ma, J. Wu. Existence, uniqueness and asymptotic stability of traveling wavefronts in A non-local delayed diffusion equation. J. Dyn. Diff. Eq., 19(2007), 391–436. [CrossRef] [Google Scholar]
  13. A. Maler, F. Lutscher. Cell cycle times and the tumor control probability. Mathematics in Medicine and Biology, 27(2010), 313–342. [CrossRef] [Google Scholar]
  14. T. Malik, H. Smith. A resource-based model of microbial quiescence. J. Math. Biol., 53(2006), 231–252. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. R. H. Martin, H. L. Smith. Abstract functional differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc., 321(1990), 1–44. [MathSciNet] [Google Scholar]
  16. K. W. Schaaf. Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations Trans. Amer. Math. Soc., 302(1987), 587–615. [MathSciNet] [Google Scholar]
  17. H. L. Smith. Monotone dynamical systems: An introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr.,vol. 41. Amer. Math. Soc., Providence, RI, 1995. [Google Scholar]
  18. H. L. Smith, X.-Q. Zhao. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations SIAM J. Math. Anal., 31(2000), 514–534. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. R. Thieme, X.-Q. Zhao. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Diff. Eq, 195(2003), 430–470. [CrossRef] [Google Scholar]
  20. Z.-C. Wang, W.-T. Li, S. Ruan. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays. J. Diff. Eq, 222(2006), 185–232. [Google Scholar]
  21. J. Wu, X. Zou. Traveling wave fronts of reaction-diffusion systems with delay. J. Dyn. Diff. Eq., 13(2001), 651–687. Erratum: J. Dyn. Diff. Eq., 20(2008), 531–533. [Google Scholar]
  22. X.-Q. Zhao, D. Xiao. The asymptotic speed of spread and traveling waves for a vector disease model. J. Dyn. Diff. Eq., 18(2006), 1001–1019, Erratum: J. Dyn. Diff. Eq., 20(2008), 277–279. [CrossRef] [Google Scholar]
  23. X.-Q. Zhao. Dynamical Systems in Population Biology. Springer-Verlag, New York, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.