Free Access
Math. Model. Nat. Phenom.
Volume 8, Number 3, 2013
Front Propagation
Page(s) 18 - 32
Published online 12 June 2013
  1. S. B. Angenent. The zero set of a solution of a parabolic equation. J. Reine Angew. Math., 390 (1988), 79–96. [MathSciNet] [Google Scholar]
  2. D. G. Aronson, H. F. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math., 30 (1978), 33–76. [Google Scholar]
  3. G. Bunting, Y. Du, K. Krakowski. Spreading speed revisited: Analysis of a free boundary model. Netw. Heterog. Media., (to appear). [Google Scholar]
  4. Y. Du, Z. G. Lin. Spreading-vanishing dichtomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal., 42 (2010), 377–405. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Du, B. D. Lou. Spreading and vanishing in nonlinear diffusion problems with free boundaries. Preprint. [Google Scholar]
  6. Y. Du, H. Matano. Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J. Eur. Math. Soc., 12 (2010), 279–312. [CrossRef] [Google Scholar]
  7. Y. Kaneko, Y. Yamada. A free boundary problem for a reaction-diffusion equation appearing in ecology. Adv. Math. Sci. Appl., 21 (2011), 467–492. [MathSciNet] [Google Scholar]
  8. Z. G. Lin. A free boundary problem for a predator-prey model. Nonlinearity, 20 (2007), 1883–1892. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.