Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Excitable FitzHugh-Nagumo model with cross-diffusion: long-range activation instabilities

G. Gambino, M. C. Lombardo, R. Rizzo and M. Sammartino
Ricerche di Matematica 73 (S1) 115 (2024)
https://doi.org/10.1007/s11587-023-00814-9

Anomalous dielectric relaxation with multispecies linear reaction dynamics

Tao Hong, Shu Peng, Yu Peng, Zhengming Tang and Kama Huang
Physica A: Statistical Mechanics and its Applications 613 128511 (2023)
https://doi.org/10.1016/j.physa.2023.128511

Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model

Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo and Gianfranco Rubino
Discrete and Continuous Dynamical Systems - B 27 (12) 7783 (2022)
https://doi.org/10.3934/dcdsb.2022063

Two-dimensional nonlinear time fractional reaction–diffusion equation in application to sub-diffusion process of the multicomponent fluid in porous media

P. Pandey, S. Das, E-M. Craciun and T. Sadowski
Meccanica 56 (1) 99 (2021)
https://doi.org/10.1007/s11012-020-01268-1

Reaction-Subdiffusion Equations with Species-Dependent Movement

Amanda M. Alexander and Sean D. Lawley
SIAM Journal on Applied Mathematics 81 (6) 2457 (2021)
https://doi.org/10.1137/21M1414619

A General Framework for Fractional Order Compartment Models

Christopher N. Angstmann, Austen M. Erickson, Bruce I. Henry, et al.
SIAM Review 63 (2) 375 (2021)
https://doi.org/10.1137/21M1398549

Feynman--Kac Transform for Anomalous Processes

Zhen-Qing Chen, Weihua Deng and Pengbo Xu
SIAM Journal on Mathematical Analysis 53 (5) 6017 (2021)
https://doi.org/10.1137/21M1401528

Reaction–subdiffusion systems and memory: spectra, Turing instability and decay estimates

Jichen Yang and Jens D M Rademacher
IMA Journal of Applied Mathematics 86 (2) 247 (2021)
https://doi.org/10.1093/imamat/hxaa044

On a subdiffusive tumour growth model with fractional time derivative

Marvin Fritz, Christina Kuttler, Mabel L Rajendran, Barbara Wohlmuth and Laura Scarabosio
IMA Journal of Applied Mathematics 86 (4) 688 (2021)
https://doi.org/10.1093/imamat/hxab009

Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations

Christopher N. Angstmann and Bruce I. Henry
Entropy 22 (9) 1035 (2020)
https://doi.org/10.3390/e22091035

Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications

Sean D. Lawley
Physical Review E 102 (4) (2020)
https://doi.org/10.1103/PhysRevE.102.042125

Limiting Hamilton–Jacobi equation for the large scale asymptotics of a subdiffusion jump-renewal equation

Vincent Calvez, Pierre Gabriel and Álvaro Mateos González
Asymptotic Analysis 115 (1-2) 63 (2019)
https://doi.org/10.3233/ASY-191528

Scaling effects and front propagation in a class of reaction-diffusion equations: From classic to anomalous diffusion

Andrea Pietro Reverberi, Marco Vocciante and Bruno Fabiano
Chemical Engineering Journal 377 121154 (2019)
https://doi.org/10.1016/j.cej.2019.03.030

Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point

Bohdan Datsko and Vasyl Gafiychuk
Fractional Calculus and Applied Analysis 21 (1) 237 (2018)
https://doi.org/10.1515/fca-2018-0015

Fractional Order Compartment Models

Christopher N. Angstmann, Austen M. Erickson, Bruce I. Henry, et al.
SIAM Journal on Applied Mathematics 77 (2) 430 (2017)
https://doi.org/10.1137/16M1069249

Solutions for a mass transfer process governed by fractional diffusion equations with reaction terms

E.K. Lenzi, M.A.F. dos Santos, M.K. Lenzi and R. Menechini Neto
Communications in Nonlinear Science and Numerical Simulation 48 307 (2017)
https://doi.org/10.1016/j.cnsns.2017.01.009

Fractional-order model for biocontrol of the lesser date moth in palm trees and its discretization

Moustafa El-Shahed, Juan J Nieto, AM Ahmed and IME Abdelstar
Advances in Difference Equations 2017 (1) (2017)
https://doi.org/10.1186/s13662-017-1349-1

How to identify absorption in a subdiffusive medium

T. Kosztołowicz, K.D. Lewandowska and T. Klinkosz
Mathematical Modelling of Natural Phenomena 12 (6) 118 (2017)
https://doi.org/10.1051/mmnp/2017079

Linear and anomalous front propagation in systems with non-Gaussian diffusion: The importance of tails

Maurizio Serva, Davide Vergni and Angelo Vulpiani
Physical Review E 94 (1) (2016)
https://doi.org/10.1103/PhysRevE.94.012141

Proliferating Lévy Walkers and Front Propagation

H. Stage, S. Fedotov, V. Méndez, A. Nepomnyashchy and V. Volpert
Mathematical Modelling of Natural Phenomena 11 (3) 157 (2016)
https://doi.org/10.1051/mmnp/201611310