Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 11, Number 1, 2016
Reviews in mathematical modelling
|
|
---|---|---|
Page(s) | 26 - 36 | |
DOI | https://doi.org/10.1051/mmnp/201611102 | |
Published online | 03 December 2015 |
- J.-P. Bouchaud, A. Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep., 195 (1990), 127–293. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- D. ben-Abraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, 2000. [Google Scholar]
- R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339 (2000), 1–77. [NASA ADS] [CrossRef] [Google Scholar]
- R. Metzler, J. Klafter. The restaurant at the end of the random walk; recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37 (2004), R161–R208. [Google Scholar]
- W. Feller. An Introduction to Probability Theory and Its Applications, v. I. John Wiley & Sons, New York et al., 1968. [Google Scholar]
- W. Feller. An Introduction to Probability Theory and Its Applications, v. II. John Wiley & Sons, New York et al., 1971. [Google Scholar]
- B. B. Mandelbrot, J. W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10 (1968), 422–437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- I. Goychuk, P. Hänngi. Anomalous escape governed by the thermal 1/f noise. Phys. Rev. Lett., 99 (2007), 200601. [CrossRef] [PubMed] [Google Scholar]
- I. Goychuk. Viscoelastic subdiffusion: generalized Langevin equation approach. Adv. Chem. Phys., 150 (2012), 187–253. [Google Scholar]
- A. Taloni, A. Chechkin, J. Klafter. Generalized elastic model: fractional Langevin description, fluctuation relation and linear response. Math. Model. Nat. Phenomen., 8 (2) (2013), 127–143. [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Meroz, I. M. Sokolov, J. Klafter. Subdiffusion of mixed origin: When ergodicity and nonergodicity coexist. Phys. Rev. E, 81 (2010), 010101(R). [CrossRef] [Google Scholar]
- Y. Meroz, I. M. Sokolov, J. Klafter. Unequal twins: probability distributions do not determine everything. Phys. Rev. Lett., 107 (2011), 260601. [CrossRef] [PubMed] [Google Scholar]
- Y. Meroz, I. M. Sokolov. A toolbox for determining subdiffusive mechanisms. Phys. Rep., 573 (2015) 1–29. [NASA ADS] [CrossRef] [Google Scholar]
- Y. Meroz, I. M. Sokolov, J. Klafter. Test for determining a subdiffusive model in ergodic systems from dingle trajectories. Phys. Rev. Lett., 110 (2013), 090601. [CrossRef] [PubMed] [Google Scholar]
- D. H. Zanette. Wave fronts in bistable reactions with anomalous Lévy-flight diffusion. Phys. Rev. E, 55 (1997) 1181–1184. [CrossRef] [Google Scholar]
- D. del-Castillo-Negrete. Truncation effects in superdiffusive front propagation with Lévy flights. Phys. Rev. E, 79 (2009), 031120. [CrossRef] [Google Scholar]
- B. I. Henry, T. A. M. Langlands, S. L. Wearne. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equation. Phys. Rev. E, 74 (2006), 031116. [CrossRef] [MathSciNet] [Google Scholar]
- K. Seki, M. Wojcik, M. Tachiya. Fractional reaction-diffusion equation. J. Chem. Phys., 119 (2003), 2165–2170. [CrossRef] [Google Scholar]
- K. Seki, M. Wojcik, M. Tachiya. Recombination kinetics in subdiffusive media. J. Chem. Phys., 119 (2003), 7525–7533. [CrossRef] [Google Scholar]
- S. B. Yuste, L. Acedo, K. Lindenberg. Reaction front in an A + B → C reaction-subdiffusion process. Phys. Rev. E, 69 (2004), 036126. [CrossRef] [Google Scholar]
- I. M. Sokolov, M. G. W. Schmidt, F. Sagués. Reaction-subdiffusion equations. Phys. Rev. E, 73 (2006), 031102. [CrossRef] [Google Scholar]
- T. A. M. Langlands, B. I. Henry, S. L. Wearne. Anomalous subdiffusion with multispecies linear reaction dynamics. Phys. Rev. E, 77 (2008), 021111. [CrossRef] [MathSciNet] [Google Scholar]
- M. O. Vlad, J. Ross. Systematic derivaton of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations: application to the theory of neolithic transition. Phys. Rev. E, 66 (2002), 061908. [CrossRef] [MathSciNet] [Google Scholar]
- A. Yadav, W. Horsthemke. Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis. Phys. Rev. E, 74 (2006), 066118. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Nec, A. A. Nepomnyashchy. Amplitude equations for a sub-diffusive reaction-diffusion system. J. Phys. A: Math. Theor., 41 (2008), 385101. [CrossRef] [Google Scholar]
- V. Méndez, S. Fedotov, W. Horsthemke. Reaction-Transport Systems. Springer, Berlin, 2010. [Google Scholar]
- M. G. W. Schmidt, F. Sagués, I. M. Sokolov. Mesoscopic description of reactions for anomalous diffusion: a case study. J. Phys.: Condens. Matter, 19 (2007), 065118. [CrossRef] [Google Scholar]
- Y. Nec, A. A. Nepomnyashchy. Turing instability in sub-diffusive reaction-diffusion systems. J. Phys. A: Math. Theor., 40 (2007), 14687–14702. [CrossRef] [Google Scholar]
- D. Campos, V. Méndez. Nonuniversality and the role of tails in reaction-subdiffusion fronts. Phys. Rev. E, 80 (2009), 021133. [CrossRef] [Google Scholar]
- H. H. Schmidt-Martens, D. Froemberg, I. M. Sokolov. F. Sagués. Front propagation in a one-dimensional autocatalytic reaction-subdiffusion system. Phys. Rev. E, 79 (2009), 041135. [CrossRef] [Google Scholar]
- T. Kosztołowicz, K. D. Lewandowska. Application of fractional differential equations in modelling the subdiffusion-reaction process. Math. Model. Nat. Phenom., 8 (2) (2013), 44–54. [CrossRef] [EDP Sciences] [Google Scholar]
- T. Kosztołowicz, K. D. Lewandowska. Time evolution of the reaction front in a subdiffusive system. Phys. Rev. E, 78 (2008), 066103. [CrossRef] [MathSciNet] [Google Scholar]
- T. Kosztołowicz, K. D. Lewandowska. Time evolution of the reaction front in the system with one static and one subdiffusive component. Acta Phys. Polon. B, 37 (2006), 1571–1577. [Google Scholar]
- Y. Nec, V. A. Volpert, A. A. Nepomnyashchy. Front propagation problems with subdiffusion. Discr. Cont. Dyn. Syst., 27 (2010), 827–846. [CrossRef] [Google Scholar]
- T. Kosztołowicz. Cattaneo-type subdiffusion-reaction equation. Phys. Rev. E, 90 (2014), 042151. [Google Scholar]
- A. A. Nepomnyashchy, V. A. Volpert. An exactly solvable model of subdiffusion-reaction front propagation. J. Phys. A: Math. Theor., 46 (2013), 065101. [CrossRef] [MathSciNet] [Google Scholar]
- S. K. Hansen, B. Berkowitz. Integrodifferential formulations of the continuous-time random walk for solute transport subject to biomolecular A + B → 0 reactions: From micro- to mesoscopic. Phys. Rev. E, 91 (2015), 032113. [CrossRef] [Google Scholar]
- D. Froemberg, I. . Sokolov. Stationary fronts in an A + B → 0 reaction under subdiffusion. Phys. Rev. Lett. 100 (2008), 108304. [CrossRef] [PubMed] [Google Scholar]
- K. Seki, A. I. Shushin, M. Wojcik, M. Tachiya. Specific features of the kinetics of fractional-diffusion assisted geminate reactions. J. Phys.: Condens. Matter 19 (2007), 065117. [CrossRef] [Google Scholar]
- S. B. Yuste, E. Abad, K. Lindenberg. Reaction-subdiffusion model of morphogen gradient formation. Phys. Rev. E, 82 (2010), 061123. [CrossRef] [Google Scholar]
- S. B. Yuste, E. Abad, K. Lindenberg. A reaction-subdiffusion model of fluorescence recovery after photobleaching (FRAP). J. Stat. Mech. - Theory and Exp., (2014), P11014. [Google Scholar]
- C. N. Angstmann, I. C. Donelly, B. I. Henry. Continuous time random walk with reactions, forcing and trapping. Math. Model. Nat. Phenom., 8 (2) (2013), 17–27. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Fedotov, S. Falconer. Subdiffusive master equation with space-dependent anomalous exponent and structural instability. Phys. Rev. E, 85 (2012), 031132. [Google Scholar]
- S. Fedotov, S. Falconer. Random death process for the regularization of subdiffusive fractional equations. Phys. Rev. E, 87 (2013), 052139. [Google Scholar]
- S. Fedotov, A. O. Ivanov, A. Y. Zubarev. Non-homogeneous random walks, subdiffusive migration of cells and anomalous chemotaxis. Math. Model. Nat. Phenom. 8 (2) (2013), 28–43. [Google Scholar]
- D. Froemberg, H. Schmidt-Martens, I. M. Sokolov, F. Sagués. Front propagation in A + B → 2A reaction under subdiffusion. Phys. Rev. E, 78 (2008), 011128. [CrossRef] [MathSciNet] [Google Scholar]
- S. Fedotov. Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts. Phys. Rev. E, 81 (2010), 011117. [Google Scholar]
- B. I. Henry, S. L. Wearne. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math., 62 (2002), 870–887. [CrossRef] [Google Scholar]
- D. Matignon. Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl., 2 (1996), 963–970. [Google Scholar]
- Y. Nec, A. A. Nepomnyashchy. Linear stability of fractional reaction-diffusion systems. Math. Model. Nat. Phenom., 2 (2) (2007), 77–105. [CrossRef] [EDP Sciences] [Google Scholar]
- V.V. Gafiychuk, B.Y. Datsko. Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys. Rev. E 75 (2007), 055201(R). [CrossRef] [Google Scholar]
- Y. Nec, A. A. Nepomnyashchy. Turing instability of anomalous reaction - anomalous diffusion systems. Euro. J. Appl. Math., 19 (2008), 329–349. [Google Scholar]
- V. Gafiychuk, B. Datsko, V. Meleshko. Mathematical modeling of the time fractional reaction-diffusion systems. J. Comp. Appl. Math., 220 (2008), 215–225. [CrossRef] [Google Scholar]
- Y. Nec, M. J. Ward. An explicitly solvable nonlocal eigenvalue problem and the stability of a spike for a sub-diffusive reaction-diffusion systems. Math. Model. Nat. Phenom., 8 (2) (2013), 55–87. [CrossRef] [EDP Sciences] [Google Scholar]
- V. A. Volpert, Y. Nec, A. A. Nepomnyashchy. Fronts in anomalous diffusion-reaction systems. Philos. Trans. R. Soc. Lond., A 371 (2013), 20120179. [Google Scholar]
- B. I. Henry, T. A. M. Langlands, S. L. Wearne. Turing pattern formation in fractional activator-inhibitor systems. Phys. Rev. E, 72 (2005), 026101. [CrossRef] [MathSciNet] [Google Scholar]
- V. Gafiychuk, B. Datsko. Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Comp. Math. Appl., 59 (2010), 1101–1107. [CrossRef] [Google Scholar]
- V. Gafiychuk, B. Datsko. Different types of instabilities and complex dynamics in reaction-diffusion systems with fractional derivatives. J. Comp. Nonlin. Dyn. 7 (2012), 031001. [CrossRef] [Google Scholar]
- Y. Nec, M. J. Ward. Dynamics and stability of spike-type solutions to a one dimensional Gierer-Meinhardt model with sub-diffusion. Physica D 241 (2012) 947-963. [CrossRef] [Google Scholar]
- Y. Nec, M. J. Ward. The stability and slow dynamics of two-spike patterns for a class of reaction-diffusion system. Math. Model. Nat. Phenom., 8 (5) (2013), 206–232. [CrossRef] [EDP Sciences] [Google Scholar]
- B. I. Henry, T. A. M. Langlands, S. L. Wearne. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett., 100 (2008), 128103. [CrossRef] [PubMed] [Google Scholar]
- S. Fedotov, A. Iomin. Migration and proliferation dichotomy in tumor-cell invasion. Phys. Rev. Lett., 98 (2007), 118101. [CrossRef] [PubMed] [Google Scholar]
- S. Fedotov, A. Iomin. Probabilistic approach to a proliferation and migration dichotomy in tumor cell invasion. Phys. Rev. E, 77 (2008), 031911. [CrossRef] [MathSciNet] [Google Scholar]
- S. Fedotov, S. Falconer. Nonlinear degradation-enhanced transport of morphogens performing subdiffusion. Phys. Rev. E, 89 (2014), 012107. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.