Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 1, 2016
Reviews in mathematical modelling
Page(s) 26 - 36
DOI https://doi.org/10.1051/mmnp/201611102
Published online 03 December 2015
  1. J.-P. Bouchaud, A. Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep., 195 (1990), 127–293. [NASA ADS] [CrossRef] [MathSciNet]
  2. D. ben-Abraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, 2000.
  3. R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339 (2000), 1–77. [NASA ADS] [CrossRef]
  4. R. Metzler, J. Klafter. The restaurant at the end of the random walk; recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37 (2004), R161–R208.
  5. W. Feller. An Introduction to Probability Theory and Its Applications, v. I. John Wiley & Sons, New York et al., 1968.
  6. W. Feller. An Introduction to Probability Theory and Its Applications, v. II. John Wiley & Sons, New York et al., 1971.
  7. B. B. Mandelbrot, J. W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10 (1968), 422–437. [NASA ADS] [CrossRef] [MathSciNet]
  8. I. Goychuk, P. Hänngi. Anomalous escape governed by the thermal 1/f noise. Phys. Rev. Lett., 99 (2007), 200601. [CrossRef] [PubMed]
  9. I. Goychuk. Viscoelastic subdiffusion: generalized Langevin equation approach. Adv. Chem. Phys., 150 (2012), 187–253.
  10. A. Taloni, A. Chechkin, J. Klafter. Generalized elastic model: fractional Langevin description, fluctuation relation and linear response. Math. Model. Nat. Phenomen., 8 (2) (2013), 127–143. [CrossRef] [EDP Sciences]
  11. Y. Meroz, I. M. Sokolov, J. Klafter. Subdiffusion of mixed origin: When ergodicity and nonergodicity coexist. Phys. Rev. E, 81 (2010), 010101(R). [CrossRef]
  12. Y. Meroz, I. M. Sokolov, J. Klafter. Unequal twins: probability distributions do not determine everything. Phys. Rev. Lett., 107 (2011), 260601. [CrossRef] [PubMed]
  13. Y. Meroz, I. M. Sokolov. A toolbox for determining subdiffusive mechanisms. Phys. Rep., 573 (2015) 1–29. [NASA ADS] [CrossRef]
  14. Y. Meroz, I. M. Sokolov, J. Klafter. Test for determining a subdiffusive model in ergodic systems from dingle trajectories. Phys. Rev. Lett., 110 (2013), 090601. [CrossRef] [PubMed]
  15. D. H. Zanette. Wave fronts in bistable reactions with anomalous Lévy-flight diffusion. Phys. Rev. E, 55 (1997) 1181–1184. [CrossRef]
  16. D. del-Castillo-Negrete. Truncation effects in superdiffusive front propagation with Lévy flights. Phys. Rev. E, 79 (2009), 031120. [CrossRef]
  17. B. I. Henry, T. A. M. Langlands, S. L. Wearne. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equation. Phys. Rev. E, 74 (2006), 031116. [CrossRef] [MathSciNet]
  18. K. Seki, M. Wojcik, M. Tachiya. Fractional reaction-diffusion equation. J. Chem. Phys., 119 (2003), 2165–2170. [CrossRef]
  19. K. Seki, M. Wojcik, M. Tachiya. Recombination kinetics in subdiffusive media. J. Chem. Phys., 119 (2003), 7525–7533. [CrossRef]
  20. S. B. Yuste, L. Acedo, K. Lindenberg. Reaction front in an A + B → C reaction-subdiffusion process. Phys. Rev. E, 69 (2004), 036126. [CrossRef]
  21. I. M. Sokolov, M. G. W. Schmidt, F. Sagués. Reaction-subdiffusion equations. Phys. Rev. E, 73 (2006), 031102. [CrossRef]
  22. T. A. M. Langlands, B. I. Henry, S. L. Wearne. Anomalous subdiffusion with multispecies linear reaction dynamics. Phys. Rev. E, 77 (2008), 021111. [CrossRef] [MathSciNet]
  23. M. O. Vlad, J. Ross. Systematic derivaton of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations: application to the theory of neolithic transition. Phys. Rev. E, 66 (2002), 061908. [CrossRef] [MathSciNet]
  24. A. Yadav, W. Horsthemke. Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis. Phys. Rev. E, 74 (2006), 066118. [CrossRef] [MathSciNet]
  25. Y. Nec, A. A. Nepomnyashchy. Amplitude equations for a sub-diffusive reaction-diffusion system. J. Phys. A: Math. Theor., 41 (2008), 385101. [CrossRef]
  26. V. Méndez, S. Fedotov, W. Horsthemke. Reaction-Transport Systems. Springer, Berlin, 2010.
  27. M. G. W. Schmidt, F. Sagués, I. M. Sokolov. Mesoscopic description of reactions for anomalous diffusion: a case study. J. Phys.: Condens. Matter, 19 (2007), 065118. [CrossRef]
  28. Y. Nec, A. A. Nepomnyashchy. Turing instability in sub-diffusive reaction-diffusion systems. J. Phys. A: Math. Theor., 40 (2007), 14687–14702. [CrossRef]
  29. D. Campos, V. Méndez. Nonuniversality and the role of tails in reaction-subdiffusion fronts. Phys. Rev. E, 80 (2009), 021133. [CrossRef]
  30. H. H. Schmidt-Martens, D. Froemberg, I. M. Sokolov. F. Sagués. Front propagation in a one-dimensional autocatalytic reaction-subdiffusion system. Phys. Rev. E, 79 (2009), 041135. [CrossRef]
  31. T. Kosztołowicz, K. D. Lewandowska. Application of fractional differential equations in modelling the subdiffusion-reaction process. Math. Model. Nat. Phenom., 8 (2) (2013), 44–54. [CrossRef] [EDP Sciences]
  32. T. Kosztołowicz, K. D. Lewandowska. Time evolution of the reaction front in a subdiffusive system. Phys. Rev. E, 78 (2008), 066103. [CrossRef] [MathSciNet]
  33. T. Kosztołowicz, K. D. Lewandowska. Time evolution of the reaction front in the system with one static and one subdiffusive component. Acta Phys. Polon. B, 37 (2006), 1571–1577.
  34. Y. Nec, V. A. Volpert, A. A. Nepomnyashchy. Front propagation problems with subdiffusion. Discr. Cont. Dyn. Syst., 27 (2010), 827–846. [CrossRef]
  35. T. Kosztołowicz. Cattaneo-type subdiffusion-reaction equation. Phys. Rev. E, 90 (2014), 042151. [CrossRef]
  36. A. A. Nepomnyashchy, V. A. Volpert. An exactly solvable model of subdiffusion-reaction front propagation. J. Phys. A: Math. Theor., 46 (2013), 065101. [CrossRef] [MathSciNet]
  37. S. K. Hansen, B. Berkowitz. Integrodifferential formulations of the continuous-time random walk for solute transport subject to biomolecular A + B → 0 reactions: From micro- to mesoscopic. Phys. Rev. E, 91 (2015), 032113. [CrossRef]
  38. D. Froemberg, I. . Sokolov. Stationary fronts in an A + B → 0 reaction under subdiffusion. Phys. Rev. Lett. 100 (2008), 108304. [CrossRef] [PubMed]
  39. K. Seki, A. I. Shushin, M. Wojcik, M. Tachiya. Specific features of the kinetics of fractional-diffusion assisted geminate reactions. J. Phys.: Condens. Matter 19 (2007), 065117. [CrossRef]
  40. S. B. Yuste, E. Abad, K. Lindenberg. Reaction-subdiffusion model of morphogen gradient formation. Phys. Rev. E, 82 (2010), 061123. [CrossRef]
  41. S. B. Yuste, E. Abad, K. Lindenberg. A reaction-subdiffusion model of fluorescence recovery after photobleaching (FRAP). J. Stat. Mech. - Theory and Exp., (2014), P11014.
  42. C. N. Angstmann, I. C. Donelly, B. I. Henry. Continuous time random walk with reactions, forcing and trapping. Math. Model. Nat. Phenom., 8 (2) (2013), 17–27. [CrossRef] [EDP Sciences]
  43. S. Fedotov, S. Falconer. Subdiffusive master equation with space-dependent anomalous exponent and structural instability. Phys. Rev. E, 85 (2012), 031132. [CrossRef]
  44. S. Fedotov, S. Falconer. Random death process for the regularization of subdiffusive fractional equations. Phys. Rev. E, 87 (2013), 052139. [CrossRef]
  45. S. Fedotov, A. O. Ivanov, A. Y. Zubarev. Non-homogeneous random walks, subdiffusive migration of cells and anomalous chemotaxis. Math. Model. Nat. Phenom. 8 (2) (2013), 28–43. [CrossRef] [EDP Sciences] [MathSciNet]
  46. D. Froemberg, H. Schmidt-Martens, I. M. Sokolov, F. Sagués. Front propagation in A + B → 2A reaction under subdiffusion. Phys. Rev. E, 78 (2008), 011128. [CrossRef] [MathSciNet]
  47. S. Fedotov. Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts. Phys. Rev. E, 81 (2010), 011117. [CrossRef]
  48. B. I. Henry, S. L. Wearne. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math., 62 (2002), 870–887. [CrossRef]
  49. D. Matignon. Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl., 2 (1996), 963–970.
  50. Y. Nec, A. A. Nepomnyashchy. Linear stability of fractional reaction-diffusion systems. Math. Model. Nat. Phenom., 2 (2) (2007), 77–105. [CrossRef] [EDP Sciences]
  51. V.V. Gafiychuk, B.Y. Datsko. Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys. Rev. E 75 (2007), 055201(R). [CrossRef]
  52. Y. Nec, A. A. Nepomnyashchy. Turing instability of anomalous reaction - anomalous diffusion systems. Euro. J. Appl. Math., 19 (2008), 329–349.
  53. V. Gafiychuk, B. Datsko, V. Meleshko. Mathematical modeling of the time fractional reaction-diffusion systems. J. Comp. Appl. Math., 220 (2008), 215–225. [CrossRef]
  54. Y. Nec, M. J. Ward. An explicitly solvable nonlocal eigenvalue problem and the stability of a spike for a sub-diffusive reaction-diffusion systems. Math. Model. Nat. Phenom., 8 (2) (2013), 55–87. [CrossRef] [EDP Sciences]
  55. V. A. Volpert, Y. Nec, A. A. Nepomnyashchy. Fronts in anomalous diffusion-reaction systems. Philos. Trans. R. Soc. Lond., A 371 (2013), 20120179. [CrossRef]
  56. B. I. Henry, T. A. M. Langlands, S. L. Wearne. Turing pattern formation in fractional activator-inhibitor systems. Phys. Rev. E, 72 (2005), 026101. [CrossRef] [MathSciNet]
  57. V. Gafiychuk, B. Datsko. Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Comp. Math. Appl., 59 (2010), 1101–1107. [CrossRef]
  58. V. Gafiychuk, B. Datsko. Different types of instabilities and complex dynamics in reaction-diffusion systems with fractional derivatives. J. Comp. Nonlin. Dyn. 7 (2012), 031001. [CrossRef]
  59. Y. Nec, M. J. Ward. Dynamics and stability of spike-type solutions to a one dimensional Gierer-Meinhardt model with sub-diffusion. Physica D 241 (2012) 947-963. [CrossRef]
  60. Y. Nec, M. J. Ward. The stability and slow dynamics of two-spike patterns for a class of reaction-diffusion system. Math. Model. Nat. Phenom., 8 (5) (2013), 206–232. [CrossRef] [EDP Sciences]
  61. B. I. Henry, T. A. M. Langlands, S. L. Wearne. Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett., 100 (2008), 128103. [CrossRef] [PubMed]
  62. S. Fedotov, A. Iomin. Migration and proliferation dichotomy in tumor-cell invasion. Phys. Rev. Lett., 98 (2007), 118101. [CrossRef] [PubMed]
  63. S. Fedotov, A. Iomin. Probabilistic approach to a proliferation and migration dichotomy in tumor cell invasion. Phys. Rev. E, 77 (2008), 031911. [CrossRef] [MathSciNet]
  64. S. Fedotov, S. Falconer. Nonlinear degradation-enhanced transport of morphogens performing subdiffusion. Phys. Rev. E, 89 (2014), 012107. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.