Free Access

This article has an erratum: [https://doi.org/10.1051/mmnp/201611105]


Issue
Math. Model. Nat. Phenom.
Volume 11, Number 1, 2016
Reviews in mathematical modelling
Page(s) 1 - 25
DOI https://doi.org/10.1051/mmnp/201611101
Published online 03 December 2015
  1. M.V. Abakumov, I.V. Ashmetkov, N.B. Esikova, V.B. Koshelev, S.I. Mukhin, N.V. Sosnin, V.F. Tishkin, A.P. Favorskij, A.B. Khrulenko. Strategy of mathematical cardiovascular system modeling. Matematicheskoe Modelirovanie, 12 (2000), no. 2, 106-117. [Google Scholar]
  2. J. Alastruey, A.W. Khir, K.S. Matthys, P. Segers, S.J. Sherwin, P.R. Verdonck, Kim H. Parker, J. Peiró. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements. Journal of Biomechanics, 44 (2011), 2250-2258. [Google Scholar]
  3. J. Alastruey, S.M. Moore, K.H. Parker, T. David, J. Peiró, S.J. Sherwin. Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models. International journal for numerical methods in fluids, 56 (2008), no. 8, 1061-1067. [Google Scholar]
  4. J. Alastruey, K.H. Parker, J. Peiró, S.J. Sherwin. Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Communications in Computational Physics, 4 (2008), no. 2, 317-336. [Google Scholar]
  5. A.G. Alenitsyn, A.S. Kondratyev, I. Mikhailova, I. Siddique. Mathematical modeling of thrombus growth in microvessels. Journal of Prime Research in Mathematics, 4 (2008), 195-205. [Google Scholar]
  6. D. Alizadehrad, Y. Imai, K. Nakaaki, T. Ishikawa, T. Yamaguchi. Parallel simulation of cellular flow in microvessels using a particle method. Journal of Biomechanical Science and Engineering, 7 (2012), no. 1, 57-71. [CrossRef] [Google Scholar]
  7. M.P. Allen, D.J. Tidesley. Computer Simulation of Liquids. Clarendon, Oxford, 1987. [Google Scholar]
  8. T. AlMomani, H.S. Udaykumar, J.S. Marshall, K.B. Chandran. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow. Annals of Biomedical Engineering, 36 (2008), no. 6, 905-920. [CrossRef] [PubMed] [Google Scholar]
  9. M. Anand and K.R. Rajagopal. A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. of Cardiovascular Medicine and Science, 4 (2004), no. 2, 59–68. [Google Scholar]
  10. M. Anand, K. Rajagopal, K.R. Rajagopal. A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol., 253 (2008), no. 4, 725–738. [Google Scholar]
  11. G. Astarita, G. Marrucci. Principles of Non-Newtonian Fluid Mechanics. McGraw Hill, 1974. [Google Scholar]
  12. P. Bagchi. Mesoscale simulation of blood flow in small vessels. Biophysical Journal, 92 (2007), no. 6, 1858-1877.[PubMed: 17208982]. [Google Scholar]
  13. H. A. Barnes. Thixotropy - a review. J. Non-Newtonian Fluid Mech., 70 (1997), 1–33. [CrossRef] [Google Scholar]
  14. N. M. Bessonov, S.F. Golovashchenko, V. Volpert. Numerical modelling of contact elastic-plastic flows. Math. Model. Nat. Phenom., 4 (2008), no. 1, 44-87. [CrossRef] [EDP Sciences] [Google Scholar]
  15. N. Bessonov, E. Babushkina, S.F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, V. Volpert. Numerical modelling of cell distribution in blood flow. Math. Model. Nat. Phenom., 9 (2014), no. 6, 69-84. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. P.J. Blanco, R.A. Feijóo. A 3D-1D-0D Computational model for the entire cardiovascular system. Computational Mechanics, eds. E.Dvorking, M. Goldschmit, M. Storti, XXIX (2010), 5887-5911. [Google Scholar]
  17. P.J. Blanco, S.M. Watanabe, M.A.R.F. Passos, P.A. Lemos, R.A. Feijóo. An anatomically detailed arterial network model for one-dimensional computational hemodynamics. IEEE Transaction on Biomedical Engineering, 62 (2015), no. 2, 736-753. [CrossRef] [Google Scholar]
  18. T. Bodnar, K. Rajagopal, A. Sequeira. Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Math. Model. Nat. Phenom., 6 (2011), no. 5, 1-24. [CrossRef] [EDP Sciences] [Google Scholar]
  19. T. Bodnar, A. Sequeria. Numerical simulation of the coagulation dynamics of blood. Computational and Mathematical Methods in Medicine, 9 (2008), no. 2, 83–104. [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Bui, V. Lleras, O. Pantz. Dynamics of red blood cells in 2d. ESAIM: Proc., 28 (2009), 182-194. [CrossRef] [EDP Sciences] [Google Scholar]
  21. A. Ya. Bunicheva, M. A. Menyailova, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii. Studying the influence of gravitational overloads on the parameters of blood flow in vessels of greater circulation. Mathematical Models and Computer Simulations, 5 (2013), no. 1, 81-91. [CrossRef] [MathSciNet] [Google Scholar]
  22. A.Ya. Bunicheva, S.I. Mukhin, N.V. Sosnin, A.P. Favorskii. Numerical experiment in hemodynamics. Differential Equations, 40 (2004), no. 7, 984-999. [CrossRef] [MathSciNet] [Google Scholar]
  23. G.A. Buxton, N. Clarke. Computational phlebology: the simulation of a vein valve. Journal of Biological Physics, 32 (2006), no. 6, 507-521. [CrossRef] [PubMed] [Google Scholar]
  24. S. Čanić, E.H. Kim. Mathematical analysis of the quasilinear eects in a hyperbolic model blood ow through compliant axi-symmetric vessels. Mathematical Methods in the Applied Sciences, 26 (2003), 1161-1186. [CrossRef] [Google Scholar]
  25. S. Čanić, J. Tambača, G. Guidoboni, A. Mikelić, C.J. Hartley, A. Rosenstrauch. Modeling viscoelastic behaviour of arterial walls and their interaction with pulsatile blood flow. SIAM Journal of Applied Mathematics, 67 (2006), no. 1, 164-193. [CrossRef] [Google Scholar]
  26. C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed. The Mechanics of the Circulation. Oxford University Press, 1978. [Google Scholar]
  27. C.G. Caro, T.J. Pedley, R.C. Schroter, W.A. Seed. The Mechanics of the Circulation. 2nd Edition, Cambridge University Press, 2012. [Google Scholar]
  28. S. E. Charm, G. S. Kurland. Blood Flow and Microcirculation. John Wiley & Sons, 1974. [Google Scholar]
  29. I.L. Chernyavsky, N.A. Kudryashov. A Mathematical model for autoregulation of the arterial lumen by endothelium-derived relaxing factor. Advanced Science Letters, 1 (2008), no. 2, 226-230. [CrossRef] [Google Scholar]
  30. S. Chien, S. Usami, R.J. Dellenback, M.I. Gregersen. Shear dependence of effective cell volume as a determinant of blood viscosity. Science, 168 (1970), 977–979. [CrossRef] [PubMed] [Google Scholar]
  31. S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley. Viscoelastic properties of human blood and red cell suspensions. Biorheology, 12 (1975), 341–346. [PubMed] [Google Scholar]
  32. Y. I. Cho and K. R. Kensey. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part I: Steady flows. Biorheology, 28 (1991), 241–262. [CrossRef] [PubMed] [Google Scholar]
  33. E. Crepeau, M. Sorine. A reduced model of pulsatile flow in an arterial compartment. Chaos Solitons & Fractals, 34 (2007), no. 2, 594-605. [CrossRef] [MathSciNet] [Google Scholar]
  34. L.M. Crowl, A.L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Method Biomed. Eng., 26 (2010), no. 3-4, 471-487. [CrossRef] [PubMed] [Google Scholar]
  35. T. David, S. Alzaidi, H. Farr. Coupled autoregulation models in the cerebro-vasculature. Journal of Engineering Mathematics, 64 (2009), 403-415. [CrossRef] [Google Scholar]
  36. A. DiCarlo, P. Nardinocchi, G. Pontrelli, L. Teresi. A heterogeneous approach for modelling blood flow in an arterial segment. Simulations in Biomedicine V, WIT Press, 69-78, 2003. [Google Scholar]
  37. L. Dintenfass. Blood Microrheology -Viscosity Factors in Blood Flow, Ischaemia and Thrombosis. Butterworth, 1971. [Google Scholar]
  38. L. Dintenfass. Blood Viscosity, Hyperviscosity and Hyperviscosaemia. MTP Press Limited, 1985. [Google Scholar]
  39. M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn, Modeling the flow of dense suspensions of deformable particles in three dimensions, Physical Review E, 75 (2007), 066707. [Google Scholar]
  40. W. Dzwinel, K. Boryczko, D.A. Yuen. Modeling mesoscopic fluids with discrete-particles methods. Algorithms and results. In: Spasic AM, Hsu JP (eds) Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering. Taylor & Francis, CRC Press, 715-778. [Google Scholar]
  41. A. Elgarayhi, E.K. El-Shewy, A.A. Mahmoud, A.A. Elhakem. Propagation of nonlinear pressure waves in blood. ISRN Computational Biology, 2013, Article ID 436267. [Google Scholar]
  42. E. A. Evans, R. M. Hochmuth. Membrane viscoelasticity. Biophys. J., 16 (1976), no. 1, 111. [Google Scholar]
  43. D. Fedosov, B. Caswell, G.E. Karniadakis, General coarse-grained red blood cell models: I. Mechanics, 2009, arXiv:0905.0042 [q-bio.CB]. [Google Scholar]
  44. D. Fedosov, B. Caswell, G.E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophysical Journal, 98 (2010), 2215-2225. [CrossRef] [PubMed] [Google Scholar]
  45. D.A. Fedosov, Multiscale Modeling of Blood Flow and Soft Matter, PhD dissertation at Brown University, (2010). [Google Scholar]
  46. D.A. Fedosov, H. Lei, B. Caswell, S. Suresh, G.E. Karniadakis, Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Computational Biology, 7 (2011), 12, e1002270.no. [CrossRef] [PubMed] [Google Scholar]
  47. D.A. Fedosov, H. Noguchi, G. Gompper. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol., 13 (2014), 239-258. [CrossRef] [PubMed] [Google Scholar]
  48. D.A. Fedosov, I.V. Pivkin, G.E. Karniadakis, Velocity limit in DPD simulations of wall-bounded flows. J. Comp. Phys., 227 (2008) 2540-2559. [Google Scholar]
  49. N. Filipovic, M. Kojic, A. Tsuda. Modelling thrombosis using dissipative particle dynamics method. Phil. Trans. R. Soc. A, 366 (2008), 3265–3279. [Google Scholar]
  50. A.L. Fogelson. Cell-based models of blood clotting. Single-Cell-Based Models in Biology and Medicine (ed. by A.R.A. Anderson, M.A.J. Chaplain, K.A. Rejniak), Mathematics and Biosciences in Interaction, p. 234-169, Birkhäuser Verlag Basel, 2007. [Google Scholar]
  51. L. Formaggia, D. Lamponi, M. Tuveri, A. Veneziani. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Computer Methods in Biomechanics and Biomedical Engineering, 9 (2006), no. 5, 273-288. [CrossRef] [PubMed] [Google Scholar]
  52. L. Formaggia, D. Lamponi, A. Quarteroni. One-dimensional models for blood flow in arteries. Journal of Engineering Mathematics, 47 (2003), 251-276. [Google Scholar]
  53. L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics. Vol. 1. Springer, Heidelberg, 2009. [Google Scholar]
  54. T.K. Gaik, H. Demiray. Forced Korteweg-de Vries-Burgers equation in an elastic tube filled with a variable viscosity fluid. Chaos Solitons & Fractals, 38 (2008), 1134-1145. [CrossRef] [MathSciNet] [Google Scholar]
  55. T. Gamilov, Y. Ivanov, P. Kopylov, S. Simakov, Y. Vassilevski. Patient specific haemodynamic modeling after occlusion treatment in leg. Math. Model. Nat. Phenom., 9 (2014), no. 6, 85-97. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  56. H.L. Goldsmith, V.T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. Thrombosis and Haemostasis, 55 (1986), no. 3, 415-435. [PubMed] [Google Scholar]
  57. S. S. Grigorjan, Y.Z. Saakjan, A. K. Tsaturjan. On the mechanisms of generation of Korotkoff sounds. Doklady of Academy of Science of the SSSR, 251 (1980), 570-574 (in Russian). [Google Scholar]
  58. S.S. Grigorjan, Y.Z. Saakjan, A.K. Tsatutjan. To the theory of Korotkoff method. Biomechanics, (1984), 15-16, 54-75.no. [Google Scholar]
  59. R.D. Groot, P.B. Warren, Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys., 107 (1997), no. 11, 4423–4435. [CrossRef] [Google Scholar]
  60. R.D. Guy, A.L. Fogelson, J.P. Keener. Fibrin gel formation in a shear flow. Math. Med. Biol. 24 (2007), no. 1, 111–130. [CrossRef] [PubMed] [Google Scholar]
  61. G.A. Holzapfel, T.C. Gasser, R.W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 61 (2000), 1-48. [CrossRef] [MathSciNet] [Google Scholar]
  62. S.M. Hosseini, J.J. Feng. A particle-based model for the transport of erythrocytes in capillaries. Chem. Eng. Sci., 64 (2009), 4488-4497. [CrossRef] [Google Scholar]
  63. Y. Imai, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi. Modeling of hemodynamics arising from malaria infection. Journal of Biomechanics, 43 (2010), 1386-1393. [Google Scholar]
  64. Y. Imai, K. Nakaaki, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi. Margination of red blood cells infected by Plasmodium falciparum in a microvessel. Journal of Biomechanics, 44 (2011), 1553-1558. [CrossRef] [PubMed] [Google Scholar]
  65. M. Karttunen, I. Vattulainen, A. Lukkarinen. A Novel Methods in Soft Matter Simulations. Springer, Berlin, 2004. [Google Scholar]
  66. J.Keener, J.Sneyd. Mathematical Physiology. II: Systems Physiology. Springer, 2nd edition, 2008. [Google Scholar]
  67. A.S. Kholodov. Some dynamical models of external breathing and haemodynamics accounting for their coupling and substance transport. Computer Models and Medicine Progress, Nauka, Moscow, 127-163, 2001 (in Russian). [Google Scholar]
  68. A.S. Kholodov, A.V. Evdokimov, S.S. Simakov. Numerical simulation of peripheral circulation and substance transfer with 2D models. Mathematical biology: recent trends, eds. P. Chandra, R. Kumar, 22-29, 2006. [Google Scholar]
  69. S. Kim, Y.I. Cho, A. H. Jeon, B. Hogenauer, K.R. Kensey. A new method for blood viscosity measurement. J. Non-Newtonian Fluid Mech., 94 (2000), 47-56. [CrossRef] [Google Scholar]
  70. C.S. Kim, C. Kris, D. Kwak. Numerical models of human circulatory system under altered gravity: brain circulation. AIAA Paper No. 2004-1092, AIAA 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2004. [Google Scholar]
  71. J.F. Koleski, E.C. Eckstein. Near wall concentration profiles of 1.0 and 2.5 μm beads during flow of blood suspensions, Trans. Ann. Soc. Intern. Organs, 37 (1991), 9-12. [CrossRef] [Google Scholar]
  72. V. Koshelev, S. Mukhin, T. Sokolova, N. Sosnin, A. Favorski. Mathematical modelling of cardio-vascular hemodynamics with account of neuroregulation. Matematicheskoe Modelirovanie, 19 (2007), no. 3, 15-28 (in Russian). [Google Scholar]
  73. W. Kroon, W. Huberts, M. Bosboom, F. van de Vosse. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models. Computational and Mathematical Methods in Medicine, (2012), Article ID 156094. [Google Scholar]
  74. P.W. Kuchel, E.D. Fackerell. Parametric-equation representation of biconcave erythrocytes. Bulletin of Mathematical Biology, 61 (1999), 209-220. [CrossRef] [PubMed] [Google Scholar]
  75. I. Larrabidea, P.J. Blanco, S.A. Urquiza, E.A. Dari, M.J. Véneref, N.A. de Souza e Silvac, R.A. Feijóo. HeMoLab - hemodynamics modelling laboratory: an application for modelling the human cardiovascular system. Computers in Biology and Medicine, 42 (2012), 993-1004. [Google Scholar]
  76. M. B. Lawrence, T. A. Springer. Leukocytes roll on a selectin at physiological flow rates: distinction from and prerequisite for adhesion through integrins. Cell, 65 (1991), 859-873. [CrossRef] [PubMed] [Google Scholar]
  77. R.C. Leif, J. Vinograd, The Distribution of Buoyant Density of Human Erythrocytes in Bovine Albumin Solutions, Proc. Natl. Acad. Sci. USA, 51 (1964), 3, 520-528.no. [CrossRef] [Google Scholar]
  78. S. Leibler, A.C. Maggs, Simulation of shape changes and adhesion phenomena in an elastic model of erythrocytes. Proc. Natl. Acad. Sci. USA, 87 (1990), 6433-6435. [CrossRef] [Google Scholar]
  79. D. Liepsch, St. Moravec. Pulsatile flow of non-Newtonian fluid in distensible models of human arteries. Biorheology, 21 (1984), 571-586. [PubMed] [Google Scholar]
  80. K. Logana, R. Balossino, F. Migliavacca, G. Pennati, E.L. Bove, M.R. Leval, G. Dubini, Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusion in the univentricular circulation. Journal of Biomechanics, 38 (2005), no. 5, 1129-1141. [Google Scholar]
  81. L. Lopez, I.M. Duck, W.A. Hunt. On the shape of the erythrocyte. Biophys. J., 8 (1968), no. 11, 1228-1235. [CrossRef] [PubMed] [Google Scholar]
  82. K. Low, R. van Loon, I. Sazonov, R.L.T. Bevan, P. Nithiarasu. An improved baseline model for a human arterial network to study the impact of aneurysms on pressure-flow waveforms. International Journal of Numerical Methods in Biomedical Engineering, 28 (2012), 1224-1246. [CrossRef] [Google Scholar]
  83. G. D. O. Lowe, Ed. Clinical Blood Rheology, Vol. I and II. CRC Press, Boca Raton, Florida, 1998. [Google Scholar]
  84. J.L. McWhirter, H. Noguchi, G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. PNAS, 106 (2009), no. 15, 6039-6043. [CrossRef] [Google Scholar]
  85. E. W. Merrill, E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, R. E. Wells, Jr.. Rheology of human blood, near and at zero flow. Effects of temperature and hematocrit level. Biophys. J., 3 (1963), 199–213. [CrossRef] [PubMed] [Google Scholar]
  86. E. W. Merrill, G. C. Cokelet, A. Britten, R. E. Wells. Non-Newtonian rheology of human blood. Effect of fibrinogen deduced by subtraction. Circulat. Res., 13 (1963), 48–55. [CrossRef] [Google Scholar]
  87. V. Milisić, A. Quarteroni. Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM: Mathematical Modelling and Numerical Analysis, 38 (2004), no. 4, 613-632. [CrossRef] [EDP Sciences] [Google Scholar]
  88. N. Mohandas, P.G. Gallagher, Red cell membrane: past, present, and future. Blood, 112 (2008)m 3939-3948. [CrossRef] [PubMed] [Google Scholar]
  89. P.C. F. Moller, J. Mewis, D. Bonn. Yield stress and thixotropy: on the difficulty of measuring yield stress in practice. Soft Matter, 2 (2006), 274–288. [CrossRef] [PubMed] [Google Scholar]
  90. Y. Mori, C. Peskin. A universal programmable fiber architecture for the representation of a general incompressible linearly elastic material as a fiber-reinforced fluid. Advances in Applied Mathematics, 43 (2009), no. 1, 75-100. [CrossRef] [Google Scholar]
  91. L.O. Müller, C. Parés, E. Toro. Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties. Journal of Computational Physics, 242 (2013), 53-85. [CrossRef] [MathSciNet] [Google Scholar]
  92. L.O. Müller, E. Toro. A global multiscale mathematical model for the human circulation with emphasis on the venous system. International Journal for Numerical Methods in Biomedical Engineering, 30 (2014), no. 7, 681-725. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  93. L.L. Munn, M.M. Dupin, Blood Cell Interactions and Segregation in Flow. Annals of Biomedical Engineering, 36 (2008), no. 4, 534-544. [CrossRef] [PubMed] [Google Scholar]
  94. S. Muñoz San Martín, J.L. Sebastián, M. Sancho1, G. Álvarez. Modeling human erythrocyte shape and size abnormalities. arXiv:q-bio/0507024 [q-bio.QM], 14 Jul 2005. [Google Scholar]
  95. J.P. Mynard, P. Nithiarasu. A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Communications in Numerical Methods in Engineering, 24 (2008), no. 5, 367-417. [Google Scholar]
  96. Q. D. Nguyen, D. V. Boger. Measuring the flow properties of yield stress fluids. Annual Reviews, 24 (1992), 47–88. [Google Scholar]
  97. H. Noguchi, G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. PNAS, 102 (2005), no. 40, 14159-14164. [Google Scholar]
  98. D. Obrist, B. Weber, A. Buck, P. Jenny. Red blood cell distribution in simplified capillary networks, Phil. Trans. R. Soc. A, 368 (2010), doi: 10.1098/rsta.2010.0045. [Google Scholar]
  99. T. Ohashi, H. Liu, T. Yamaguchi. Computational fluid dynamic simulation of the flow through venous valve. In: Clinical Application of Computational Mechanics to the Cardiovascular System, 186–189, Springer, 2000. [Google Scholar]
  100. M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of Biomedical Engineering, 28 (2000), 1281-1299. [CrossRef] [PubMed] [Google Scholar]
  101. R. G. Owens. A new microstructure-based constitutive model for human blood, J. Non -Newtonian Fluid Mech., 14 (2006), 57-70. [CrossRef] [Google Scholar]
  102. E. Ozawa, K. Bottom, X. Xiao R.D. Kamm. Numerical simulation of enhanced external counterpulsation. Annals of Biomedical Engineering, 29 (2001), 284-297. [CrossRef] [PubMed] [Google Scholar]
  103. Q. Pan, R. Wang, B. Reglin, G. Cai, J. Yan, A.R. Pries, G. Ning. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks. Journal of Biomedical Engineering, 136 (2014), no. 1, 011009. [Google Scholar]
  104. T.J. Pedley, X.Y. Luo. Modelling flow and oscillations in collapsible tubes. Theoretical and Computational Fluid Dynamics, 10 (1998), 277-294. [CrossRef] [Google Scholar]
  105. D. Pinho, A. Pereira, R. Lima, T. Ishikawa, Y. Imai, T. Yamaguchi. Red blood cell dispersion in 100 μm glass capillaries: the temperature effect. C.T. Lim and J.C.H. Goh (Eds.), WCB 2010, IFMBE Proceedings, 31 (2010), 1067–1070. [Google Scholar]
  106. E. Pinto, B. Taboada, R. Rodrigues, V. Faustino, A. Pereira, R. Lima. Cell-free layer (CFL) analysis in a polydimethysiloxane (PDMS) microchannel: a global approach. WebmedCentral Biomedical Engineering, 4 (2013), 8, WMC004374. [Google Scholar]
  107. I.V. Pivkin, G.E. Karniadakis, Accurate coarse-grained modeling of red blood cells. Physical Review letters, 101 (2008), 118105. [CrossRef] [PubMed] [Google Scholar]
  108. I.V. Pivkin, G.E. Karniadakis. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comp. Phys., 207 (2005), 114-128. [CrossRef] [Google Scholar]
  109. I.V. Pivkin, P.D. Richardson, G. Karniadakis. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. PNAS, 103 (2006), 17164–17169. [CrossRef] [Google Scholar]
  110. A. S. Popel, P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech., 37 (2005), 43–69. [CrossRef] [PubMed] [Google Scholar]
  111. C. Pozrikidis. Modeling and Simulation of Capsules and Biological Cells, Chapman & Hall/CRC, 2003. [Google Scholar]
  112. D. Quemada. Rheology of concentrated disperse systems III. General features of the proposed non-Newtonian model. Comparison with experimental data. Rheological Acta, 17 (1978), 643-653. [CrossRef] [Google Scholar]
  113. K.R. Rajagopal, A.R. Srinivasa. A thermodynamic frame work for rate type fluid models. Journal of Non-Newtonian Fluid Mechanics, 80 (2000), 207–227. [CrossRef] [Google Scholar]
  114. A.M.Robertson, A.Sequeira, M.V. Kameneva. Hemorheology. In G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek (Eds.) Hemodynamical Flows: Modeling, Analysis and Simulation. (Oberwolfach Seminars), Birkhäuser Verlag, 37, 63-120, 2008. [Google Scholar]
  115. M.C. Roco, editor. Particulate Two-Phase Flow. Series in Chemical Engineering. Butterworth-Heinemann Publ., 1993. [Google Scholar]
  116. M. Rosar, C. Peskin. Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York Journal of Mathematics, 7 (2001), 281–302. [MathSciNet] [Google Scholar]
  117. U.D. Schiller. Dissipative Particle Dynamics. A Study of the Methodological Background. Diploma thesis at Faculty of Physics University of Bielefeld, 2005. [Google Scholar]
  118. H. Schmid-Schönbein, R. E. Wells. Rheological properties of human erythrocytes and their influence upon anomalous viscosity of blood. Physiology Rev., 63 (1971), 147–219. [Google Scholar]
  119. G. W. Scott-Blair. An equation for the flow of blood, plasma and serum through glass capillaries. Nature, 183 (1959), 613–614. [CrossRef] [Google Scholar]
  120. S. Sherwin, V. Franke, J. Peiró, K. Parker. One-dimensional modelling of a vascular network in space-time variables. Journal of Engineering Mathematics, 47 (2003), 217-250. [CrossRef] [Google Scholar]
  121. S.J. Sherwin, L. Formaggia, J. Peiró, V. Franke. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids, 43 (2003), 673-700. [Google Scholar]
  122. Y. Shi, P. Lawford, R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMedical Engineering Online, 10:33 (2011), doi:10.1186/1475-925X-10-33. [Google Scholar]
  123. S.S. Simakov, T.M. Gamilov, Y.N. Soe. Computational study of blood flow in lower extremities under intense physical load. Russian Journal of Numerical Analysis and Mathematical Modelling, 28 (2013), no. 5, 485-504. [CrossRef] [MathSciNet] [Google Scholar]
  124. S.S. Simakov, A.S. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances. Mathematical Models and Computer Simulations, 1 (2009), 283-295. [Google Scholar]
  125. R. Skalak, A. Tozeren, R. Zarda, S. Chein. Strain energy function of red blood cell membranes. Biophysical Journal 13 (1973), no. 3, 245-264 [PubMed: 4697236]. [Google Scholar]
  126. M.F. Snyder, V.C. Rideout. Computer simulation studies of the venous circulation. IEEE Transactions on Bio-Medical Engineering, BME-16 (1969) no. 4, 325-334. [Google Scholar]
  127. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia, 1 (2005), 15-30. [CrossRef] [PubMed] [Google Scholar]
  128. C.R. Sweet, S. Chatterjee, Z. Xu, K. Bisordi, E.D. Rosen, M. Alber. Modelling platelet - blood flow interaction using the subcellular element Langevin method. J. R. Soc. Interface, 8 (2011), 1760-1771. [CrossRef] [PubMed] [Google Scholar]
  129. G. B. Thurston. Viscoelasticity of human blood. Biophys. J., 12 (1972), 1205–1217. [CrossRef] [PubMed] [Google Scholar]
  130. G.B. Thurston. Non-Newtonian viscosity of human blood: Flow induced changes in microstructure. Biorheology, 31 (1994), no. 2, 179–192. [PubMed] [Google Scholar]
  131. G. B. Thurston. Viscoelastic properties of blood and blood analogs. Advances in Hemodynamics and Hemorheology, 1 (1996), 1–30. [CrossRef] [Google Scholar]
  132. A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J., 100 (2011), no. 4, 799-808. [CrossRef] [PubMed] [Google Scholar]
  133. A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov. Platelet transport and adhesion in shear blood flow: the role of erythrocytes. Computer Research and Modeling, 4 (2012), no. 1, 185-200 (Russian). [Google Scholar]
  134. A.A. Tokarev, A.A. Butylin, E.A. Ermakova, E.E. Shnol, G.P. Panasenko, F.I. Ataullakhanov. Finite platelet size could be responsible for platelet margination effect. Biophysical Journal, 101 (2011), 1835-1843. [Google Scholar]
  135. A. Tokarev, I. Sirakov, G. Panasenko, V. Volpert, E. Shnol, A. Butylin, F. Ataullakhanov. Continuous mathematical model of platelet thrombus formation in blood flow. Russian Journal of Numerical Analysis and Mathematical Modelling, 27 (2012), no. 2, 192-212. [CrossRef] [Google Scholar]
  136. A. Tosenberger, V. Salnikov, N. Bessonov, E. Babushkina, V. Volpert. Particle dynamics methods of blood flow simulations. Math. Model. Nat. Phenom., 6 (2011), no. 5, 320–332. [CrossRef] [EDP Sciences] [Google Scholar]
  137. A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert. Modelling of thrombus growth in flow with a DPD-PDE method. Journal of Theoretical Biology, 337 (2013), 30-41. [Google Scholar]
  138. K. Tsubota, S. Wada. Elastic force of red blood cell membrane during tank-treading motion: Consideration of the membrane’s natural state. International Journal of Mechanical Sciences, 52 (2010), 356-364. [CrossRef] [Google Scholar]
  139. K. Tsubota, S. Wada, H. Kamada, Y. Kitagawa, R. Lima, T. Yamaguchi. A particle method for blood flow simulation, application to flowing red blood cells and platelets. Journal of the Earth Simulator, 5 (2006), 2-7. [Google Scholar]
  140. F. J. Walburn, D. J. Schneck. A constitutive equation for whole human blood. Biorheology, 13 (1976), 201–210. [PubMed] [Google Scholar]
  141. Yu. Vassilevskii, S. Simakov, V. Salamatova, Yu. Ivanov, T. Dobroserdova. Numerical issues of modelling blood flow in networks of vessels with pathologies. Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), no. 6, 605-622. [Google Scholar]
  142. Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov, T. Dobroserdova. Blood flow simulation in atherosclerotic vascular network using fiber-spring representation of diseased wall. Math. Model. Nat. Phenom., 6 (2011), no. 5, 333-349. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  143. Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov, T. Dobroserdova. Vessel wall models for simulation of atherosclerotic vascular networks. Math. Model. Nat. Phenom., 6 (2011), no. 7, 82-99. [CrossRef] [EDP Sciences] [Google Scholar]
  144. F.N. van de Vosse, N. Stergiopulos. Pulse wave propagation in the arterial tree. Annual Review of Fluid Mechanics, 43 (2011), 467-499. [CrossRef] [Google Scholar]
  145. N. Xiao, J. Alastruey-Arimon, C.A. Figueroa. A systematic comparison between 1D and 3D hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering. 30 (2014), no. 2, 204-231. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  146. Z. Xu, N. Chen, M.M. Kamocka, E.D. Rosen, M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface, 5 (2008), 705–722. [CrossRef] [PubMed] [Google Scholar]
  147. C. Yeh, A.C. Calvez, E.c. Eckstein. An estimated shape function for drift in a platelet-transport model. Biophysical Journal, 67 (1994), 1252-1259. [CrossRef] [PubMed] [Google Scholar]
  148. C. Yeh, E.C. Eckstein. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophysical Journal, 66 (1994), 1706-1716. [CrossRef] [PubMed] [Google Scholar]
  149. K.K. Yeleswarapu, M.V. Kameneva, K. R. Rajagopal, J. F. Antaki. The flow of blood in tubes: Theory and experiment. Mechanics Research Communications, 25 (1998), no. 3, 257–262. [CrossRef] [Google Scholar]
  150. J. Zhang, P.C. Johnson, A.S. Popel. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc Res., 77 (2009), 265-272. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.