Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 1, 2016
Reviews in mathematical modelling
Page(s) 37 - 48
DOI https://doi.org/10.1051/mmnp/201611103
Published online 03 December 2015
  1. K. Aihara, H. Suzuki. Theory of hybrid dynamical systems and its applications to biological and medical systems. Phil. Trans. R. Soc. A (2010), 368, 4893–4914. [CrossRef] [Google Scholar]
  2. P.J. Antsaklis. Special issue on hybrid system: theory and applications. A brief introduction to the theory and applications of hybrid systems. Proceedings of the IEEE (2000), 88(7), 879–887. [CrossRef] [Google Scholar]
  3. S. Bernard. How to build a multiscale model in biology. Acta biotheor. (2013), 61, 291–303. [CrossRef] [PubMed] [Google Scholar]
  4. N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, V. Volpert. Application of hybrid models to blood cell production in the bone marrow. Math. Mod. Nat. Phenom. (2011), 6(7), 2–12. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  5. B.S. Brooks, S.L. Waters. Mathematical challenges in integrative physiology. J.Math. Biol. (2008), 56, 893–896. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Byrne and D. Drasdo. Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. (2009), 58, 657–687. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. C. Cattani, A. Ciancio. Separable transition density in the hybrid model for tumor-immune system competition. Comp. Math. Meth. Med. (2012), 610124. [Google Scholar]
  8. A. Colombi, M. Scianna, L. Preziosi. A measure-theoretic model for collective cell migration and aggregation. Math. Mod. Nat. Phenom. (2015), 10(1), 4. [CrossRef] [EDP Sciences] [Google Scholar]
  9. P.V. Coveney, P.W. Fowler. Modelling biological complexity: a physical scientist’s perspective. J. R. Soc. Interface (2005), 2, 267–280. [CrossRef] [PubMed] [Google Scholar]
  10. T.S. Deisboeck, Z. Wang, P. Macklin, V. Cristini. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. (2011), 13, 127-155. [CrossRef] [PubMed] [Google Scholar]
  11. S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste. Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage. J. theor. Biol. (2012), 298, 92–106. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. J. Fisher, N. Piterman. The executable pathway to biological networks. Briefings in functional genomics (2010), 9(1), 79–92. [CrossRef] [PubMed] [Google Scholar]
  13. V. Galpin, J. Hillston, L. Bortolussi. HYPE applied to the modelling of hybrid biological systems. Electronic Notes in Theoretical Computer Science (2008), 218, 33–51. [CrossRef] [Google Scholar]
  14. N. Glade, A. Stéphanou. Le vivant discret et continu: modes de représentation en biologie théorique. Editions Matériologiques, Paris, 2013. [Google Scholar]
  15. P. Guerrero, T. Alarcón. Stochastic multiscale models of cell population dynamics: asymptotic and numerical methods. Math. Mod. Nat. Phenom. (2015), 10(1). [Google Scholar]
  16. T.A.M. Heck, M.M. Vaeyens, H. Van Oosterwyck. Computational models of sprouting angiogenesis and cell migration: towards multiscale mechanochemical models of angiogenesis. Math. Mod. Nat. Phenom. (2015), 10(1). [Google Scholar]
  17. W.P.M.H. Heemels, B. De Schutter, J. Lunze, M. Lazar. Stability analysis and controller synthesis for hybrid dynamical systems. Phil. Trans. R. Soc. A (2010), 368, 4937–4960. [CrossRef] [Google Scholar]
  18. X. Li, L. Qian, M.L. Bittner, E.R. Dougherty. A systems biology approach in therapeutic response study for different dosing regimens - a modeling study of drug effects on tumor growth using hybrid systems. Cancer Informatics (2012), 11, 41–60. [PubMed] [Google Scholar]
  19. D. Machado, R.S. Costa, M. Rocha, E.C. Ferreira, B. Tidor, I. Rocha. Modeling formalisms in systems biology. AMB Express (2011), 1, 45. [Google Scholar]
  20. L. Mailleret, V. Lemesle. A note on semi-discrete modelling in the life sciences. Phil. Trans. R. Soc. A (2009), 367, 4779–4799. [CrossRef] [Google Scholar]
  21. A. Masoudi-Nejad, E. Wang. Cancer modeling and network biology: accelerating toward personalized medicine. Seminars in Cancer Biology (2015), 30, 1-3. [CrossRef] [PubMed] [Google Scholar]
  22. B. Mishra. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology. J. R. Soc. Interface (2009), 6, 575–597. [CrossRef] [PubMed] [Google Scholar]
  23. T. Nomura. Toward integration of biological and physiological functions at multiple levels. Frontiers in Physiology (2010), 1, 164. [CrossRef] [Google Scholar]
  24. J.M. Osborne, A. Walter, S.K. Kershaw, G.R. Mirams, A.G. Fletcher, P. Pathmanathan, D. Gavaghan, O.E. Jensen, P.K. Maini, H.M. Byrne. A hybrid approach to multi-scale modelling of cancer. Phil. Trans. R. Soc. A (2010), 368, 5013–5028. [CrossRef] [Google Scholar]
  25. G.G. Powathil, K.E. Gordon, L.A. Hill, M.A. Chaplain. Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. J. theor. Biol. (2012), 308, 1–9. [CrossRef] [PubMed] [Google Scholar]
  26. G.G. Powathil, M. Swat, M.A.J. Chaplain. Systems oncology: Towards patient-specific treatment regimes informed by multiscale modelling. Seminars in Cancer Biology (2015), 30, 13–20. [CrossRef] [PubMed] [Google Scholar]
  27. L. Preziosi. Hybrid and multiscale modelling. J. Math. Biol. (2006), 53, 977–978. [CrossRef] [PubMed] [Google Scholar]
  28. Z. Qu, A. Garfinkel, J.N. Weiss, M. Nivala. Multi-scale modeling in biology: How to bridge the gaps beween scales ? Prog. Biophys. Mol. Biol. (2011), 107, 21–31. [CrossRef] [PubMed] [Google Scholar]
  29. K.A. Rejniak, A.R.A. Anderson. Hybrid models if tumor growth. Wiley Interdiscipl. Rev. Syst. Biol. Med. (2011), 3(1), 115–125. [CrossRef] [Google Scholar]
  30. S. Sanga, H.B. Frieboes, X. Zheng, R. Gatenby, E.L. Bearer, V. Cristini. Predictive oncology: multidisciplinary, multi-scale in-silico modeling linking phenotype, morphology and growth. Neuroimage (2007), 37(1), S120–S134. [CrossRef] [PubMed] [Google Scholar]
  31. A. Singh, J.P. Hespanha. Stochastic hybrid systems for studying biochemical processes. Phil. Trans. R. Soc. A (2010), 368, 4995–5011. [CrossRef] [Google Scholar]
  32. R. Singhania, R.M. Sramkoski, J.W. Jacobberger, J.J. Tyson. A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol. (2011), 7(2), e1001077. [CrossRef] [Google Scholar]
  33. A. Stéphanou, S. Le Floc’h, A. Chauvière. A hybrid model to test the importance of mechanical cues driving cell migration in angiogenesis. Math. Mod. Nat. Phenom. (2015), 10(1). [Google Scholar]
  34. A. Stéphanou, V. Volpert. Hybrid modelling in cell biology. Math. Mod. Nat. Phenom. (2015), 10(1), 1-3. [CrossRef] [EDP Sciences] [Google Scholar]
  35. G. Tanaka, Y. Hirata, S.L. Goldenberg, N. Bruchovsky, K. Aihara. Mathematical modelling of prostate cancer growth and its application to hormone therapy. Phil. Trans. R. Soc. A (2010), 368, 5029–5044. [CrossRef] [Google Scholar]
  36. R. Thom. Stabilité structurelle et morphogenèse. Interédition, Paris, 1977. [Google Scholar]
  37. A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert. Modelling of thrombus growth in flow with a DPD-PDE-method. J. theor. Biol. (2013), 337, 30–41. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  38. A. Tosenberger, N. Bessonov, V. Volpert. Influence of blood coagulation on clot formation in flow by a hybrid model. Math. Mod. Nat. Phenom. (2015), 10(1), 36. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  39. D. Vries, P.J.T. Verheijen, A.J. den Dekker. Hybrid system modeling and identification of cell biology systems: perpective and challenges. Symposium on system identification (2009), 227–232. [Google Scholar]
  40. Z. Wang, J.D. Butner, R. Kerketta, V. Cristini. Simulating cancer growth with multiscale agent-based modeling. Seminars in cancer biology (2015), 30. [Google Scholar]
  41. A.L. Woelke, M.S. Murgueitio, R. Preissner. Theoretical modeling techniques and their impact on tumor immunology. Clinical and Developmental Immunology (2010), 271794. [Google Scholar]
  42. L. Zhang, L.L. Chen, T.S. Deisboeck. Multi-scale, multi-resolution brain cancer modeling. Math. Comput. Simul. (2009), 79(7), 2021–2035. [CrossRef] [PubMed] [Google Scholar]
  43. L. Zhang, Z. Wang, J.A. Sagotsky, T.S. Deisboeck. Multiscale agent-based cancer modeling. J. Math. Biol. (2009), 58, 545–559. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  44. E.C.Zeeman. Levels of structure in catastrophe theory illustrated by applications in the social and biological sciences, Proceedings of the International Congress of Mathematicians (Vancouver, 1974) 2:533-546, Canad. Math. Congress, Montreal, 1975. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.