Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 1, 2016
Reviews in mathematical modelling
Page(s) 37 - 48
DOI https://doi.org/10.1051/mmnp/201611103
Published online 03 December 2015
  1. K. Aihara, H. Suzuki. Theory of hybrid dynamical systems and its applications to biological and medical systems. Phil. Trans. R. Soc. A (2010), 368, 4893–4914. [CrossRef]
  2. P.J. Antsaklis. Special issue on hybrid system: theory and applications. A brief introduction to the theory and applications of hybrid systems. Proceedings of the IEEE (2000), 88(7), 879–887. [CrossRef]
  3. S. Bernard. How to build a multiscale model in biology. Acta biotheor. (2013), 61, 291–303. [CrossRef] [PubMed]
  4. N. Bessonov, F. Crauste, S. Fischer, P. Kurbatova, V. Volpert. Application of hybrid models to blood cell production in the bone marrow. Math. Mod. Nat. Phenom. (2011), 6(7), 2–12. [CrossRef] [EDP Sciences] [MathSciNet]
  5. B.S. Brooks, S.L. Waters. Mathematical challenges in integrative physiology. J.Math. Biol. (2008), 56, 893–896. [CrossRef] [MathSciNet]
  6. H. Byrne and D. Drasdo. Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. (2009), 58, 657–687. [CrossRef] [MathSciNet] [PubMed]
  7. C. Cattani, A. Ciancio. Separable transition density in the hybrid model for tumor-immune system competition. Comp. Math. Meth. Med. (2012), 610124.
  8. A. Colombi, M. Scianna, L. Preziosi. A measure-theoretic model for collective cell migration and aggregation. Math. Mod. Nat. Phenom. (2015), 10(1), 4. [CrossRef] [EDP Sciences]
  9. P.V. Coveney, P.W. Fowler. Modelling biological complexity: a physical scientist’s perspective. J. R. Soc. Interface (2005), 2, 267–280. [CrossRef] [PubMed]
  10. T.S. Deisboeck, Z. Wang, P. Macklin, V. Cristini. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. (2011), 13, 127-155. [CrossRef] [PubMed]
  11. S. Fischer, P. Kurbatova, N. Bessonov, O. Gandrillon, V. Volpert, F. Crauste. Modeling erythroblastic islands: Using a hybrid model to assess the function of central macrophage. J. theor. Biol. (2012), 298, 92–106. [CrossRef] [MathSciNet] [PubMed]
  12. J. Fisher, N. Piterman. The executable pathway to biological networks. Briefings in functional genomics (2010), 9(1), 79–92. [CrossRef] [PubMed]
  13. V. Galpin, J. Hillston, L. Bortolussi. HYPE applied to the modelling of hybrid biological systems. Electronic Notes in Theoretical Computer Science (2008), 218, 33–51. [CrossRef]
  14. N. Glade, A. Stéphanou. Le vivant discret et continu: modes de représentation en biologie théorique. Editions Matériologiques, Paris, 2013.
  15. P. Guerrero, T. Alarcón. Stochastic multiscale models of cell population dynamics: asymptotic and numerical methods. Math. Mod. Nat. Phenom. (2015), 10(1).
  16. T.A.M. Heck, M.M. Vaeyens, H. Van Oosterwyck. Computational models of sprouting angiogenesis and cell migration: towards multiscale mechanochemical models of angiogenesis. Math. Mod. Nat. Phenom. (2015), 10(1).
  17. W.P.M.H. Heemels, B. De Schutter, J. Lunze, M. Lazar. Stability analysis and controller synthesis for hybrid dynamical systems. Phil. Trans. R. Soc. A (2010), 368, 4937–4960. [CrossRef]
  18. X. Li, L. Qian, M.L. Bittner, E.R. Dougherty. A systems biology approach in therapeutic response study for different dosing regimens - a modeling study of drug effects on tumor growth using hybrid systems. Cancer Informatics (2012), 11, 41–60. [PubMed]
  19. D. Machado, R.S. Costa, M. Rocha, E.C. Ferreira, B. Tidor, I. Rocha. Modeling formalisms in systems biology. AMB Express (2011), 1, 45.
  20. L. Mailleret, V. Lemesle. A note on semi-discrete modelling in the life sciences. Phil. Trans. R. Soc. A (2009), 367, 4779–4799. [CrossRef]
  21. A. Masoudi-Nejad, E. Wang. Cancer modeling and network biology: accelerating toward personalized medicine. Seminars in Cancer Biology (2015), 30, 1-3. [CrossRef] [PubMed]
  22. B. Mishra. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology. J. R. Soc. Interface (2009), 6, 575–597. [CrossRef] [PubMed]
  23. T. Nomura. Toward integration of biological and physiological functions at multiple levels. Frontiers in Physiology (2010), 1, 164. [CrossRef]
  24. J.M. Osborne, A. Walter, S.K. Kershaw, G.R. Mirams, A.G. Fletcher, P. Pathmanathan, D. Gavaghan, O.E. Jensen, P.K. Maini, H.M. Byrne. A hybrid approach to multi-scale modelling of cancer. Phil. Trans. R. Soc. A (2010), 368, 5013–5028. [CrossRef]
  25. G.G. Powathil, K.E. Gordon, L.A. Hill, M.A. Chaplain. Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. J. theor. Biol. (2012), 308, 1–9. [CrossRef] [PubMed]
  26. G.G. Powathil, M. Swat, M.A.J. Chaplain. Systems oncology: Towards patient-specific treatment regimes informed by multiscale modelling. Seminars in Cancer Biology (2015), 30, 13–20. [CrossRef] [PubMed]
  27. L. Preziosi. Hybrid and multiscale modelling. J. Math. Biol. (2006), 53, 977–978. [CrossRef] [PubMed]
  28. Z. Qu, A. Garfinkel, J.N. Weiss, M. Nivala. Multi-scale modeling in biology: How to bridge the gaps beween scales ? Prog. Biophys. Mol. Biol. (2011), 107, 21–31. [CrossRef]
  29. K.A. Rejniak, A.R.A. Anderson. Hybrid models if tumor growth. Wiley Interdiscipl. Rev. Syst. Biol. Med. (2011), 3(1), 115–125. [CrossRef]
  30. S. Sanga, H.B. Frieboes, X. Zheng, R. Gatenby, E.L. Bearer, V. Cristini. Predictive oncology: multidisciplinary, multi-scale in-silico modeling linking phenotype, morphology and growth. Neuroimage (2007), 37(1), S120–S134. [CrossRef] [PubMed]
  31. A. Singh, J.P. Hespanha. Stochastic hybrid systems for studying biochemical processes. Phil. Trans. R. Soc. A (2010), 368, 4995–5011. [CrossRef]
  32. R. Singhania, R.M. Sramkoski, J.W. Jacobberger, J.J. Tyson. A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol. (2011), 7(2), e1001077. [CrossRef]
  33. A. Stéphanou, S. Le Floc’h, A. Chauvière. A hybrid model to test the importance of mechanical cues driving cell migration in angiogenesis. Math. Mod. Nat. Phenom. (2015), 10(1).
  34. A. Stéphanou, V. Volpert. Hybrid modelling in cell biology. Math. Mod. Nat. Phenom. (2015), 10(1), 1-3. [CrossRef] [EDP Sciences]
  35. G. Tanaka, Y. Hirata, S.L. Goldenberg, N. Bruchovsky, K. Aihara. Mathematical modelling of prostate cancer growth and its application to hormone therapy. Phil. Trans. R. Soc. A (2010), 368, 5029–5044. [CrossRef]
  36. R. Thom. Stabilité structurelle et morphogenèse. Interédition, Paris, 1977.
  37. A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert. Modelling of thrombus growth in flow with a DPD-PDE-method. J. theor. Biol. (2013), 337, 30–41. [CrossRef] [MathSciNet] [PubMed]
  38. A. Tosenberger, N. Bessonov, V. Volpert. Influence of blood coagulation on clot formation in flow by a hybrid model. Math. Mod. Nat. Phenom. (2015), 10(1), 36. [CrossRef] [EDP Sciences] [MathSciNet]
  39. D. Vries, P.J.T. Verheijen, A.J. den Dekker. Hybrid system modeling and identification of cell biology systems: perpective and challenges. Symposium on system identification (2009), 227–232.
  40. Z. Wang, J.D. Butner, R. Kerketta, V. Cristini. Simulating cancer growth with multiscale agent-based modeling. Seminars in cancer biology (2015), 30.
  41. A.L. Woelke, M.S. Murgueitio, R. Preissner. Theoretical modeling techniques and their impact on tumor immunology. Clinical and Developmental Immunology (2010), 271794.
  42. L. Zhang, L.L. Chen, T.S. Deisboeck. Multi-scale, multi-resolution brain cancer modeling. Math. Comput. Simul. (2009), 79(7), 2021–2035. [CrossRef] [PubMed]
  43. L. Zhang, Z. Wang, J.A. Sagotsky, T.S. Deisboeck. Multiscale agent-based cancer modeling. J. Math. Biol. (2009), 58, 545–559. [CrossRef] [MathSciNet] [PubMed]
  44. E.C.Zeeman. Levels of structure in catastrophe theory illustrated by applications in the social and biological sciences, Proceedings of the International Congress of Mathematicians (Vancouver, 1974) 2:533-546, Canad. Math. Congress, Montreal, 1975.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.