Free Access
Issue
Math. Model. Nat. Phenom.
Volume 11, Number 1, 2016
Reviews in mathematical modelling
Page(s) 49 - 90
DOI https://doi.org/10.1051/mmnp/201611104
Published online 03 December 2015
  1. V. Ajraldi, M. Pittavino, E. Venturino. Modelling herd behavior in population systems. Nonlinear Analysis Real World Applications, 12 (2011), 2319–2338. [CrossRef] [MathSciNet]
  2. H. R., Akcakaya. Population cycles of mammals: evidence for ratio-dependent predator-prey hypothesis. Ecol. Monogr., 62 (1992) 119–142. [CrossRef]
  3. W. C. Allee. The Social Life of Animals. New York: Norton and Co. (1938).
  4. R. M. Anderson, R. M. May. The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. London B, 314 (1986), 533–570. [CrossRef]
  5. O. Arino, M. Delgado, M. Molina-Becerra. Asymptotic behaviour of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems Series B, 4 (2004), 501–515. [CrossRef]
  6. R. A. Armstrong, R. McGehee. Competitive exclusion. The American Naturalist, 115 (1980), 151–170. [CrossRef]
  7. P. Auger, R. Mchich, T. Chowdhury, G. Sallet, M. Tchuente, J. Chattopadhyay. Effects of a disease affecting a predator on the dynamics of a predator-prey system. Journal of Theoretical Biology, 258 (2009), 344–351. [CrossRef] [MathSciNet] [PubMed]
  8. N. Bairagi, P.K. Roy, J. Chattopadhyay. Role of infection on the stability of a predator-prey system with several response functions–A comparative study. Journal of Theoretical Biology, 248 (2007), 10–25. [CrossRef] [MathSciNet] [PubMed]
  9. N. Bairagi, S. Chaudhuri, J. Chattopadhyay. Harvesting as a disease control measure in an eco-epidemiological system – A theoretical study. Mathematical Biosciences, 217 (2009), 134–144. [CrossRef] [MathSciNet] [PubMed]
  10. N. Bairagi, R.R. Sarkar, J. Chattopadhyay. Impacts of incubation delay on the dynamics of an eco-epidemiological system–A theoretical study. Bulletin of Mathematical Biology, 70 (2008), 2017–2038. DOI: 10.1007/s11538-008-9337-y [CrossRef] [MathSciNet] [PubMed]
  11. M. Banerjee, E. Venturino. A phytoplankton–toxic phytoplankton–zooplantkon model. Ecological Complexity, 8 (2011), 239–248. [CrossRef]
  12. A. M. Bate, F. M. Hilker. Complex dynamics in an eco-epidemiological model. Bull. Math. Biol., 75 (2013), 2059–2078. DOI: 10.1007/s11538-013-9880-z [CrossRef] [MathSciNet] [PubMed]
  13. A. M. Bate, F. M. Hilker. Predator-prey oscillations can shift when diseases become endemic. Journal of Theoretical Biology, 316 (2013), 1–8. [CrossRef] [MathSciNet] [PubMed]
  14. A. M. Bate, F. M. Hilker. Disease in group-defending prey can benefit predators. Theor. Ecol., 7 (2014), 87–100. DOI: 10.1007/s12080-013-0200-x [CrossRef]
  15. S. Bhattacharyya, D. K. Bhattacharya. Pest control through viral disease: mathematical modeling and analysis. J. Theor. Biol., 238 (2006), 177–196. [CrossRef] [PubMed]
  16. J. Beddington. Mutual interference between parasites or predators and its effect on searching efficiency. J.Anim. Ecol., 51 (1975), 331–340. [CrossRef]
  17. E. Beltrami, T.O. Carroll. Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol., 32 (1994), 857–863. [CrossRef]
  18. S. Belvisi, E. Venturino. An ecoepidemic model with diseased predators and prey group defense. SIMPAT, 34 (2013), 144–155. DOI: 10.1016/j.simpat.2013.02.004
  19. E. Beretta, Y. Kuang. Modeling and analysis of a marine bacteriophage infection. Math. Biosci., 149 (1998), 57–76. [CrossRef] [MathSciNet] [PubMed]
  20. A. Berruti, V. La Morgia, E. Venturino, S. Zappalà. Competition among invasive and native species: the case of European and mountain hares, CMMSE 14, July 3rd-7th, 2014, Costa Ballena, Rota, Cádiz (Spain), (J. Vigo-Aguiar, I.P. Hamilton, J. Medina, P. Schwertfeger, W. Sproessig, M. Demiralp, E. Venturino, V.V. Kozlov, P. Oliveira Editors) v. I, 170–181.
  21. F. Bianco, E. Cagliero, M. Gastelurrutia, E. Venturino. Metaecoepidemic models: infected and migrating predators. Int. J. Comp. Math., 89(13-14) (2012), 1764–1780. [CrossRef]
  22. C. Bosica, A. De Rossi, N. L. Fatibene, M. Sciarra, E. Venturino. Two-strain ecoepidemic systems: the obligated mutualism case. Applied Math. Inf. Sci. 9(4), (2015) 1677–1685.
  23. P. A. Braza. Predator-prey dynamics with square root functional responses. Nonlinear Analysis: Real World Applications, 13 (2012), 1837–1843. [CrossRef] [MathSciNet]
  24. I. M. Bulai, R. Cavoretto, B. Chialva, D. Duma, E. Venturino. Comparing disease control policies for interacting wild populations. Nonlinear Dynamics, 79 (2015), 1881–1900. [CrossRef]
  25. S. Busenberg, P. van den Driessche. Analysis of a disease transmission model in a population with varying size. J. of Math. Biology, 28 (1990), 257–270. [CrossRef]
  26. E. Cagliero, E. Venturino. Ecoepidemics with infected prey in herd defence: the harmless and toxic cases. International Journal of Computer Mathematics, (2015), to appear. DOI: 10.1080/00207160.2014.988614
  27. R. Cavoretto, S. Collino, B. Giardino, E. Venturino. A two-strain ecoepidemic competition model. Theoretical Ecology, 8(1) (2015), 37–52. DOI: 10.1007/s12080-014-0232-x [CrossRef]
  28. R. Cavoretto, A. De Rossi, E. Perracchione, E. Venturino, Reliable approximation of separatrix manifolds in competition models with safety niches, to appear in International Journal of Computer Mathematics.
  29. S. Chatterjee, J. Chattopadhyay. Role of migratory bird population in a simple eco-epidemiological model. Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, 13 (2007), 99–114. DOI: 10.1080/13873950500303352
  30. S. Chatterjee, K. Das, J. Chattopadhyay. Time delay factor can be used as a key factor for preventing the outbreak of a disease–Results drawn from a mathematical study of a one season eco-epidemiological model. Nonlinear Analysis: Real World Applications, 8 (2007), 1472–1493. [CrossRef] [MathSciNet]
  31. S. Chatterjee, M. Isaia, E. Venturino. Spiders as biological controllers in the agroecosystem. Journal of Theoretical Biology 258 (2009), 352–362. [CrossRef] [MathSciNet] [PubMed]
  32. J. Chattopadhyay, O. Arino. A predator-prey model with disease in the prey. Nonlinear Analysis, 36 (1999), 747–766. [CrossRef] [MathSciNet]
  33. J. Chattopadhyay, N. Bairagi. Pelicans at risk in Salton sea - an eco-epidemiological model. Ecological Modelling, 136 (2001), 103–112. [CrossRef]
  34. J. Chattopadhyay, S. Chatterjee, E. Venturino. Patchy agglomeration as a transition from monospecies to recurrent plankton blooms. Journal of Theoretical Biology, 253 (2008), 289–295. [CrossRef] [MathSciNet] [PubMed]
  35. J. Chattopadhyay, R.R. Sarkar, G. Ghosal. Removal of infected prey prevent limit cycle oscillations in an infected prey-predator system - a mathematical study. Ecological Modelling, 156 (2002), 113–121. [CrossRef]
  36. J. Chattopadhayay, R. R. Sarkar, S. Mandal. Toxin-producing Plankton May Act as a Biological Control for Planktonic Blooms-Field Study and Mathematical Modelling. J. Theor. Biol., 215 (2002), 333–344. doi:10.1006/jtbi.2001.2510 [CrossRef] [PubMed]
  37. J. Chattopadhyay, R. R. Sarkar, S. Pal. Dynamics of nutrient-phytoplankton interaction in the presence of viral infection. BioSystems, 68 (2003), 5–17. [CrossRef] [PubMed]
  38. S. Chaudhuri, A. Costamagna, E. Venturino. Epidemics spreading in predator-prey systems. Int. J. Comp. Math., 89 (2012), 561–584. [CrossRef]
  39. S. Chaudhuri, J. Chattopadhyay, E. Venturino. Toxic phytoplankton-induced spatiotemporal patterns. J. of Biological Physics, 38 (2012), 331–348. [CrossRef] [PubMed]
  40. S. Chaudhuri, A. Costamagna, E. Venturino. Ecoepidemics overcoming the species-barrier and being subject to harvesting. Mathematical Medicine and Biology, 30 (2013), 73–93. doi:10.1093/imammb/dqr026 [CrossRef] [MathSciNet]
  41. C. Clark. Mathematical bioeconomics: the optimal management of renewable resources. Wiley, New York, (1976).
  42. C. Cosner, D. L. De Angelis. Effects of spatial grouping on the functional response of predators. Theoretical Population Biology, 56 (1999), 65–75. [CrossRef] [PubMed]
  43. K. p. Das, S. Roy, J. Chattopadhyay. Effect of disease-selective predation on prey infected by contact and external sources. BioSystems, 95 (2009), 188–199 [CrossRef] [PubMed]
  44. K. p. Das, J. Chattopadhyay. Role of environmental disturbance in an eco-epidemiological model with disease from external source. Math. Meth. Appl. Sci., 35 (2012), 659–675
  45. K. p. Das, K. Kundu, J. Chattopadhyay. A predator-prey mathematical model with both the populations affected by diseases. Ecological Complexity, 8 (2011), 68–80. [CrossRef]
  46. D. De Angelis, R. Goldstein, and R. O’Neill. A model for trophic interaction. Ecology, 56 (1975), 881–892. [CrossRef]
  47. A. De Rossi, F. Lisa, L. Rubini, A. Zappavigna, E. Venturino. A food chain ecoepidemic model: infection at the bottom trophic level. Ecological Complexity 21 (2015) 233–245. [CrossRef]
  48. M. Delgado, M. Molina-Becerra, A. Suarez. Relating disease and predation: equilibria of an epidemic model. Math. Methods Appl. Sci., 28 (2005), 349–362. [CrossRef]
  49. B. Dennis. Allee effects: population growth, critical density, and the chance of extinction. Nat. Res. Model., 3 (1989), 481–538.
  50. J. Z. Farkas, A. Y. Morozov. Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems. Math. Model. Nat. Phenom., 9(3) (2014), 26–46. doi: 10.1051/mmnp/20149303 [CrossRef] [EDP Sciences]
  51. L. Ferreri, E. Venturino. Cellular automata for contact ecoepidemic processes in predator-prey systems. Ecological Complexity, 13 (2013), 8–20. [CrossRef]
  52. Q.L. Gao, H.W. Hethcote. Disease transmission models with density dependent demographics. J. Math. Biol., 30 (1992), 717–731. [MathSciNet] [PubMed]
  53. S. A. H. Geritz, M. Gyllenberg. Group defence and the predator’s functional response. J. Math. Biol., 66 (2013), 705–717. DOI: 10.1007/s00285-012-0617-7 [CrossRef] [MathSciNet] [PubMed]
  54. G. Gimmelli, B. W. Kooi, E. Venturino. Ecoepidemic models with prey group defense and feeding saturation. Ecological Complexity, 22 (2015), 50–58. [CrossRef]
  55. E. González-Olivares, R. Ramos-Jiliberto. Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecological Modelling, 166 (2003), 135–146. [CrossRef]
  56. E. González-Olivares, R. Ramos-Jiliberto. Comments to the effect of prey refuge in a simple predator-prey model. Ecological Modelling, 232 (2012), 158–160. [CrossRef]
  57. D. Greenhalgh, M. Haque. A predator-prey model with disease in the prey species only. Math. Meth. Appl. Science, 30 (2007), 911–929. [CrossRef]
  58. M. E. Gurtin, R. C. McCamy. Nonlinearly age-dependent population dynamics. Archs. Ration. Mech. Analysis, 54 (1974), 281–300. [CrossRef]
  59. M. Gyllenberg, J. Hemminki, T. Tammaru. Allee effects can both conserve and create spatial heterogeneity in population densities. Theor. Pop. Biol., 56 (1999), 231–242. [CrossRef]
  60. K.P. Hadeler, H.I. Freedman. Predator-prey population with parasitic infection. J. Math. Biol., 27 (1989), 609–631. [CrossRef] [MathSciNet] [PubMed]
  61. L. Han, Z. Ma, H.W. Hethcote. Four predator prey models with infectious diseases. Math. Comp. Modelling, 30 (2001), 849–858. [CrossRef]
  62. I. Hanski, M. Gilpin (Editors) Metapopulation biology: ecology, genetics and evolution, Academic Press, London (1997).
  63. I. Hanski, A. Moilanen, T. Pakkala, M. Kuussaari. Metapopulation persistence of an endangered butterfly: a test of the quantitative incidence function model. Conservation Biology, 10 (1996), 578–590. [CrossRef]
  64. M. Haque, J. Chattopadhyay. Influences of non-linear incidence rate in an eco-epidemiological model of the Salton Sea. Nonlinear Studies, 10 (2003), 373–388. [MathSciNet]
  65. M. Haque, S. Rahman, E. Venturino. Comparing functional responses in predator-infected eco-epidemics models. BioSystems, 114 (2013), 98–117. [CrossRef] [PubMed]
  66. M. Haque, S. Sarwardi, S. Preston, E. Venturino. Effect of delay in a Lotka-Volterra type predator-prey model with a transmissible disease in the predator species. Mathematical Biosciences, 234 (2011), 47–57. [CrossRef] [MathSciNet] [PubMed]
  67. M. Haque, J. Zhen, E. Venturino. An epidemiological predator-prey model with standard disease incidence. Mathematical Methods in the Applied Sciences, 32 (2009), 875–898. [CrossRef]
  68. M. Haque, E. Venturino. The role of transmissible diseases in the Holling-Tanner predator-prey model. Theoretical Population Biology, 70 (2006), 273–288. [CrossRef] [PubMed]
  69. M. Haque, E. Venturino. Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. HERMIS, 7 (2006), 39–60.
  70. M. Haque, E. Venturino. An ecoepidemiological model with disease in the predator: the ratio-dependent case. Math. Meth. Appl. Sci., 30 (2007), 1791–1809. [CrossRef]
  71. M. Haque, E. Venturino. Effect of parasitic infection in the Leslie-Gower predator-prey model. Journal of Biological Systems, 16 (2008), 445–461. [CrossRef]
  72. M. Haque, E. Venturino. Mathematical models of diseases spreading in symbiotic communities. in J.D. Harris, P.L. Brown (Editors), Wildlife: Destruction, Conservation and Biodiversity, NOVA Science Publishers, New York, (2009) 135–179.
  73. H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42 (2000), 599–653. [CrossRef] [MathSciNet]
  74. H. W. Hethcote, H. W. Stech, and P. van den Driessche. Periodicity and stability in epidemic models: A survey. In Differential Equations and Applications in Ecology, Epidemics and Population Problems, S. N. Busenberg and K. L. Cooke, eds., Academic Press, New York (1981), 65–82.
  75. H.W. Hethcote, W. Wang, L. Han, Z. Ma. A predator prey model with infected prey. Theoretical Population Biology, 66 (2004), 259–268. [CrossRef] [PubMed]
  76. F. M. Hilker. Population collapse to extinction: the catastrophic combination of parasitism and Allee effect. Journal of Biological Dynamics, 4 (2010), 86–101. [CrossRef] [MathSciNet] [PubMed]
  77. F. M. Hilker, M. Langlais, H. Malchow. The Allee Effect and Infectious Diseases: Extinction, Multistability, and the (Dis-)Appearance of Oscillations. The American Naturalist, 173 (2009), 72–88. [CrossRef] [PubMed]
  78. F. M. Hilker, H. Malchow. Strange Periodic Attractors in a Prey-Predator System with Infected Prey. Mathematical Population Studies, 13 (2006), 119–134. DOI: 10.1080/08898480600788568 [CrossRef] [MathSciNet]
  79. F. M. Hilker, H. Malchow, M. Langlais, S. V. Petrovskii. Oscillations and waves in a virally infected plankton system: Part II: Transition from lysogeny to lysis. Ecological Complexity, 3 (2006), 200–208. [CrossRef]
  80. F. Hilker, K. Schmitz. Disease-induced stabilization of predator-prey cycles. Journal of Theoretical Biology, 255 (2008), 299–306. [CrossRef] [PubMed]
  81. I. S. Hotopp, H. Malchow, E. Venturino. Switching feeding among sound and infected prey in ecoepidemic systems. Journal of Biological Systems, 18 (2010), 727–747. DOI: 10.1142/S0218339010003718. [CrossRef] [MathSciNet]
  82. Y.H. Hsieh, C.K. Hsiao. A predator-prey model with disease infection in both populations. Mathematical Medicine and Biology, 25 (2008), 247–266. [CrossRef]
  83. S. Jana, T. K. Kar. Modeling and analysis of a prey-predator system with disease in the prey. Chaos, Solitons & Fractals, 47 (2013), 42–53. [CrossRef] [MathSciNet]
  84. S. Jana, T.K. Kar. A mathematical study of a prey-predator model in relevance to pest control. Nonlinear Dynamics, 74 (2013), 667–683. [CrossRef]
  85. A. Kacha, M. H. Hbid, R. Bravo. Mathematical study of bacteria-fish model with level of infection structure. Nonlinear Analysis: Real World Applications, 10 (2009), 1662–1678. [CrossRef] [MathSciNet]
  86. Y. Kang, S. K. Sasmal, A. M. Bhowmick, J. Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering, 11 (2014), 877–918. [CrossRef] [MathSciNet]
  87. T. K. Kar, S. Jana. Application of three controls optimally in a vector-borne disease–a mathematical study. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 2868–2884. [CrossRef]
  88. T. K. Kar, S. Jana. A theoretical study on mathematical modelling of an infectious disease with application of optimal control. BioSystems 111 (2013), 37–50. [CrossRef] [PubMed]
  89. Q.J.A. Khan, E. Balakrishnan, G.C. Wake. Analysis of a predator-prey system with predator switching. Bull. Math. Biol., 66 (2004), 109–123. [CrossRef] [MathSciNet] [PubMed]
  90. Q.J.A. Khan, B.S. Bhatt, R.P. Jaju. Switching model with two habitats and a predator involving group defence. J. of Nonlinear Mathematical Physics, 5 (1998), 212–223. [CrossRef]
  91. B. W., Kooi, G. A. K., van Voorn, K. p. Das. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease. Ecol. Complexity, 8 (2011), 113–122. [CrossRef]
  92. M. A. Lewis, P. Kareiva. Allee dynamics and the spread of invading organisms. Theor. Popul. Biol., 43 (1993), 141–158. [CrossRef]
  93. J. Liu. Stability and Hopf bifurcation in a prey-predator system with disease in the prey and two delays. Abstract and Applied Analysis, (2014), Article ID 624546, 15 pages. DOI: 10.1155/2014/624546
  94. Z. Ma, S. Wang, Z. Li. The effect of prey refuge in a simple predator-prey model. Ecological Modelling, 222 (2011), 3453–3454. [CrossRef]
  95. H. Malchow H. F. M. Hilker, S. V. Petrovskii, K. Brauer Oscillations and waves in a virally infected plankton system: Part I: The lysogenic stage. Ecological Complexity, 1 (2004), 211–223. [CrossRef]
  96. H. Malchow, F. M. Hilker, R. R. Sarkar, K. Brauer. Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection. Mathematical and Computer Modelling, 42 (2005), 1035–1048. [CrossRef]
  97. H. Malchow, S. Petrovskii, E. Venturino. Spatiotemporal patterns in Ecology and Epidemiology. CRC, Boca Raton, (2008).
  98. J. Mena-Lorca, H. W. Hethcote. Dynamic models of infectious diseases as regulator of population sizes. J. Math. Biology, 30 (1992), 693–716.
  99. A. Molter, M. Rafikov. Nonlinear optimal control of population systems: applications in ecosystems. Nonlinear Dynamics, 76 (2014), 1141–1150. [CrossRef]
  100. M. Rafikov, J. C. Silveira. On dynamical behavior of the sugarcane borer – Parasitoid agroecosystem, Ecological Complexity, 18 (2014), 67–73. [CrossRef]
  101. A. Morozov. Revealing the role of predator-dependent disease transmission in the epidemiology of a wildlife infection: a model study. Theoretical Ecology, 5 (2012), 517–532. [CrossRef]
  102. A.Y. Morozov. Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling. Journal of Theoretical Biology, 265 (2010), 45–54. [CrossRef] [MathSciNet] [PubMed]
  103. N. M. Oliveira, F. M. Hilker. Modelling Disease Introduction as Biological Control of Invasive Predators to Preserve Endangered Prey. Bulletin of Mathematical Biology, 72 (2010), 444–468. DOI: 10.1007/s11538-009-9454-2 [CrossRef] [MathSciNet] [PubMed]
  104. S. Palomino Bean, A.C.S. Vilcarromero, J.F.R. Fernandes, O. Bonato. Co-existẽncia de Espécies em Sistemas Presa-predador com Switching (Species coexistence in predator-prey systems with switching). TEMA Tend. Mat. Apl. Comput., 7 (2006), 317–326. [CrossRef] [MathSciNet]
  105. E. Renshaw. Modelling biological populations in space and time. Cambridge Univ. Press, Cambridge, UK (1991).
  106. M.G. Roberts, J.A.P. Heesterbeek. Characterizing the next-generation matrix and basic reproduction number in ecological epidemiology. J. Math. Biol., 66 (2013), 1045–1064, DOI: 10.1007/s00285-012-0602-1 [CrossRef] [MathSciNet] [PubMed]
  107. T. Romano, M. Banerjee, E. Venturino. A comparison of several plankton models for red tides. in G. Kehayias (Editor) Zooplankton: Species Diversity, Distribution and Seasonal Dynamics, Nova Science Publishers, Hauppauge, NY, 2014, 19-63. ISBN: 978-1-62948-720-5
  108. M.L. Rosenzweig, R.H. MacArthur. Graphical representation and stability conditions of predator-prey interactions. Am. Nat., 97 (1963), 209–223. [CrossRef]
  109. S. Roy, S. Alam, J. Chattopadhyay. Competitive effects of toxin-producing phytoplankton on overall plankton populations in the Bay of Bengal. Bull. Math. Biol., 68 (2006), 2303–2320. [CrossRef] [MathSciNet] [PubMed]
  110. S. Roy, J. Chattopadhyay. Disease-selective predation may lead to prey extinction. Math. Meth. Appl. Sci., 28 (2005), 1257–1267. [CrossRef]
  111. G.D. Ruxton. Short term refuge use and stability of predator-prey models. Theoretical Population Biology, 47 (1995), 1–17. [CrossRef]
  112. R.A. Saenz, H.W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences and Engineering, 3 (2006), 219–235. [MathSciNet]
  113. R.R. Sarkar, S. Pal, J. Chattopadhyay. Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system, a mathematical study supported by experimental findings. BioSystems, 80 (2005), 11–13. [CrossRef] [PubMed]
  114. S. Sarwardi, M. Haque, E. Venturino. A Leslie-Gower Holling-type II ecoepidemic model. J. Applied Mathematics and Computing, 35 (2011), 263–280. DOI: 10.1007/s12190-009-0355-1 [CrossRef]
  115. S. Sarwardi, M. Haque, E. Venturino. Global stability and persistence in Leslie-Gower Holling type II diseased predator ecosystems. J. Biol. Phys., 37 (2011), 91–106. DOI: 10.1007/s10867-010-9201-9. [CrossRef] [PubMed]
  116. S. K. Sasmal, J. Chattopadhyay. An eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Mathematical Biosciences, 246 (2013), 260–271. [CrossRef] [MathSciNet] [PubMed]
  117. M. Semplice, E. Venturino. Travelling waves in plankton dynamics. Math. Model. Nat. Phenom., 8 (2013), No. 6, 64–79.DOI: 10.1051/mmnp/20138605. [CrossRef] [EDP Sciences]
  118. M. Sen, E. Venturino. A model for which toxic and non-toxic phytoplankton are indistinguishable by the zooplantkon. AIP Conf. Proc. 1479, ICNAAM 2012 (2012), T. Simos, G. Psihoylos, Ch. Tsitouras, Z. Anastassi (Editors), 1315–1318. doi: 10.1063/1.4756397
  119. M. Sieber, F. M. Hilker. Prey, predators, parasites: intraguild predation or simpler community modules in disguise?. Journal of Animal Ecology, 80 (2011), 414–421. doi: 10.1111/j.1365-2656.2010.01788.x [CrossRef]
  120. M. Sieber, F. M. Hilker. The hydra effect in predator-prey models. J. Math. Biol., 64 (2012), 341–360. [CrossRef] [MathSciNet] [PubMed]
  121. M. Sieber, H. Malchow, F. M. Hilker. Disease-induced modification of prey competition in eco-epidemiological models. Ecological Complexity, 18 (2014), 74–82. [CrossRef]
  122. I. Siekmann, H. Malchow, E. Venturino. An extension of the Beretta-Kuang model of viral diseases. Mathematical Biosciences and Engineering, 5 (2008), 549–565. [CrossRef] [MathSciNet]
  123. I. Siekmann, H. Malchow, E. Venturino. On competition of predators and prey infection, Ecological Complexity, 7 (2010), 446-457; doi:10.1016. [CrossRef]
  124. B.K. Singh, J. Chattopadhyay, S. Sinha. The role of virus infection in a simple phytoplankton zooplankton system. Journal of Theoretical Biology, 231 (2004), 153–166. [CrossRef] [MathSciNet] [PubMed]
  125. D. Stiefs, E. Venturino, U. Feudel. Evidence of chaos in ecoepidemic models. Mathematical Biosciences and Engineering, 6 (2009), 855–871. [CrossRef] [MathSciNet]
  126. C. Tannoia, E. Torre, E. Venturino. An incubating diseased-predator ecoepidemic model. J. Biol. Phys., 38 (2012), 705–720. [CrossRef] [PubMed]
  127. M. Tansky. Switching effects in prey-predator system. J. Theor. Biol., 70 (1978), 263–271. [CrossRef] [PubMed]
  128. R.K. Upadhyay, N. Bairagi, K. Kundu, J. Chattopadhyay. Chaos in eco-epidemiological problem of the Salton Sea and its possible control. Applied Mathematics and Computation, 196 (2008), 392–401. [CrossRef]
  129. E. Venturino. The influence of diseases on Lotka-Volterra systems. Rocky Mountain J. of Mathematics, 24 (1994), 381–402. [CrossRef] [MathSciNet]
  130. E. Venturino. Epidemics in predator-prey models: disease in the prey. in Mathematical Population dynamics, Analysis of heterogeneity 1, in O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Editors) (1995) 381–393.
  131. E. Venturino. The effects of diseases on competing species. Math. Biosc., 174 (2001), 111–131. [CrossRef] [MathSciNet] [PubMed]
  132. E. Venturino. Epidemics in predator-prey models: disease in the predators. IMA J. Math. Appl. Med. and Biol., 19 (2002), 185–205. [CrossRef]
  133. E. Venturino. A stage-dependent ecoepidemic model. WSEAS Transactions on Biology and Biomedicine, 1 (2004), 449–454.
  134. E. Venturino. How diseases affect symbiotic communities. Math. Biosc., 206 (2007), 11–30. [CrossRef]
  135. E. Venturino. Ecoepidemic models with disease incubation and selective hunting. Journal of Computational and Applied Mathematics, 234 (2010), 2883–2901. [CrossRef]
  136. E. Venturino. A minimal model for ecoepidemics with group defense. J. of Biological Systems, 19 (2011), 763–785. [CrossRef] [MathSciNet]
  137. E. Venturino. Simple metaecoepidemic models. Bulletin of Mathematical Biology, 73 (2011), 917–950. [CrossRef] [MathSciNet] [PubMed]
  138. E. Venturino. An ecogenetic model. Appl. Math. Letters, 25 (2012), 1230–1233. [CrossRef]
  139. E. Venturino, M. Isaia, F. Bona, S. Chatterjee, G. Badino. Biological controls of intensive agroecosystems: wanderer spiders in the Langa Astigiana. Ecological Complexity, 5 (2008), 157–164. [CrossRef]
  140. E. Venturino, S. Petrovskii. Spatiotemporal Behavior of a Prey-Predator System with a Group Defense for Prey. Ecological Complexity, 14 (2013), 37–47. doi: 10.1016/j.ecocom.2013.01.004 [CrossRef]
  141. C. Viberti, E. Venturino. An ecosystem with Holling type II response and predators’ genetic variability. Mathematical Modelling and Analysis, 19, (2014) 371–394. [CrossRef] [MathSciNet]
  142. P. Waltman. Competition models in population biology. SIAM, Philadelphia, 1983.
  143. Y. Wang, J. Wang. Influence of prey refuge on predator-prey dynamics. Nonlinear Dynamics, 67 (2012), 191–201. [CrossRef]
  144. J. A. Wiens. Metapopulation dynamics and landscape ecology, in I. A. Hanski, M. E. Gilpin (Ed.s), Metapolulation Biology: Ecology, Genetics and Evolution, San Diego: Academic Press (1997) 43–62.
  145. J. Zhen, M. Haque. Global stability analysis of an eco-epidemiological model of the Salton sea. Journal of Biological Systems, 14 (2006), 373–385. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.