Issue |
Math. Model. Nat. Phenom.
Volume 2, Number 2, 2007
Reaction-diffusion waves
|
|
---|---|---|
Page(s) | 77 - 105 | |
DOI | https://doi.org/10.1051/mmnp:2008020 | |
Published online | 15 June 2008 |
Linear Stability of Fractional Reaction - Diffusion Systems
Department of Mathematics, Technion, Israel Institute of Technology,
Haifa, 32000, Israel
Corresponding author: flyby@techunix.technion.ac.il
Theoretical framework for linear stability of an anomalous sub-diffusive activator-inhibitor system is set. Generalized Turing instability conditions are found to depend on anomaly exponents of various species. In addition to monotonous instability, known from normal diffusion, in an anomalous system oscillatory modes emerge. For equal anomaly exponents for both species the type of unstable modes is determined by the ratio of the reactants' diffusion coefficients. When the ratio exceeds its normal critical value, the monotonous modes become stable, whereas oscillatory instability persists until the anomalous critical value is also exceeded. An exact formula for the anomalous critical value is obtained. It is shown that in the short wave limit the growth rate is a power law of the wave number. When the anomaly exponents differ, disturbance modes are governed by power laws of the distinct exponents. If the difference between the diffusion anomaly exponents is small, the splitting of the power law exponents is absent at the leading order and emerges only as a next-order effect. In the short wave limit the onset of instability is governed by the anomaly exponents, whereas the ratio of diffusion coefficients influences the complex growth rates. When the exponent of the inhibitor is greater than that of the activator, the system is always unstable due to the inhibitor enhanced diffusion relatively to the activator. If the exponent of the activator is greater, the system is always stable. Existence of oscillatory unstable modes is also possible for waves of moderate length.
Mathematics Subject Classification: 34D05 / 35K57
Key words: reaction-diffusion / anomaly exponent / monotonous instablity / oscillatory instability / critical diffusion coefficients' ratio
© EDP Sciences, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.