Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

On selection dynamics for competitive interactions

Pierre-Emmanuel Jabin and Gaël Raoul
Journal of Mathematical Biology 63 (3) 493 (2011)
DOI: 10.1007/s00285-010-0370-8
See this article

Properness and Topological Degree for Nonlocal Reaction-Diffusion Operators

N. Apreutesei and V. Volpert
Abstract and Applied Analysis 2011 1 (2011)
DOI: 10.1155/2011/629692
See this article

A finite volume method for nonlocal competition-mutation equations with a gradient flow structure

Wenli Cai and Hailiang Liu
ESAIM: Mathematical Modelling and Numerical Analysis 51 (4) 1223 (2017)
DOI: 10.1051/m2an/2016058
See this article

Preface to the Issue Nonlocal Reaction-Diffusion Equations

M. Alfaro, N. Apreutesei, F. Davidson, et al.
Mathematical Modelling of Natural Phenomena 10 (6) 1 (2015)
DOI: 10.1051/mmnp/201510601
See this article

On a non-local selection–mutation model with a gradient flow structure

Pierre-Emmanuel Jabin and Hailiang Liu
Nonlinearity 30 (11) 4220 (2017)
DOI: 10.1088/1361-6544/aa85da
See this article

Long Time Evolution of Populations under Selection and Vanishing Mutations

Gaël Raoul
Acta Applicandae Mathematicae 114 (1-2) 1 (2011)
DOI: 10.1007/s10440-011-9603-0
See this article

Dynamics of interfaces in the Fisher-KPP equation for slowly decaying initial data

Hirokazu Ninomiya and Eiji Yanagida
Journal of Differential Equations 267 (8) 4922 (2019)
DOI: 10.1016/j.jde.2019.05.021
See this article

Stability and pattern formation for competing populations with asymmetric nonlocal coupling

M.C. Tanzy, V.A. Volpert, A. Bayliss and M.E. Nehrkorn
Mathematical Biosciences 246 (1) 14 (2013)
DOI: 10.1016/j.mbs.2013.09.002
See this article

Small populations corrections for selection-mutation models

Pierre-Emmanuel Jabin
Networks and Heterogeneous Media 7 (4) 805 (2012)
DOI: 10.3934/nhm.2012.7.805
See this article

Local integration of population dynamics via moving least squares approximation

E. Shivanian
Engineering with Computers 32 (2) 331 (2016)
DOI: 10.1007/s00366-015-0424-z
See this article

Mathematical model of evolutionary branching

S. Genieys, N. Bessonov and V. Volpert
Mathematical and Computer Modelling 49 (11-12) 2109 (2009)
DOI: 10.1016/j.mcm.2008.07.018
See this article

Biological control with nonlocal interactions

Eric A. Autry, Alvin Bayliss and Vladimir A. Volpert
Mathematical Biosciences 301 129 (2018)
DOI: 10.1016/j.mbs.2018.05.008
See this article

Modes of competition and the fitness of evolved populations

Tim Rogers and Alan J. McKane
Physical Review E 92 (3) (2015)
DOI: 10.1103/PhysRevE.92.032708
See this article

AN IN VITRO CELL POPULATION DYNAMICS MODEL INCORPORATING CELL SIZE, QUIESCENCE, AND CONTACT INHIBITION

ARNAUD DUCROT, FRANK LE FOLL, PIERRE MAGAL, et al.
Mathematical Models and Methods in Applied Sciences 21 (supp01) 871 (2011)
DOI: 10.1142/S0218202511005404
See this article

Spatio-temporal pattern formation in Rosenzweig–MacArthur model: Effect of nonlocal interactions

Malay Banerjee and Vitaly Volpert
Ecological Complexity 30 2 (2017)
DOI: 10.1016/j.ecocom.2016.12.002
See this article

An efficient pseudo-spectral Legendre-Galerkin method for solving a nonlinear partial integro-differential equation arising in population dynamics

Farhad Fakhar-Izadi and Mehdi Dehghan
Mathematical Methods in the Applied Sciences 36 (12) 1485 (2013)
DOI: 10.1002/mma.2698
See this article

Traveling wave solutions in a nonlocal reaction-diffusion population model

Bang-Sheng Han and Zhi-Cheng Wang
Communications on Pure and Applied Analysis 15 (3) 1057 (2016)
DOI: 10.3934/cpaa.2016.15.1069
See this article

The non-local Fisher–KPP equation: travelling waves and steady states

Henri Berestycki, Grégoire Nadin, Benoit Perthame and Lenya Ryzhik
Nonlinearity 22 (12) 2813 (2009)
DOI: 10.1088/0951-7715/22/12/002
See this article

Complex predator invasion waves in a Holling–Tanner model with nonlocal prey interaction

A. Bayliss and V.A. Volpert
Physica D: Nonlinear Phenomena 346 37 (2017)
DOI: 10.1016/j.physd.2017.02.003
See this article

A Nagumo-type model for competing populations with nonlocal coupling

M.C. Tanzy, V.A. Volpert, A. Bayliss and M.E. Nehrkorn
Mathematical Biosciences 263 70 (2015)
DOI: 10.1016/j.mbs.2015.01.014
See this article

Patterns for Competing Populations with Species Specific Nonlocal Coupling

A. Bayliss, V. A. Volpert, M. Alfaro, et al.
Mathematical Modelling of Natural Phenomena 10 (6) 30 (2015)
DOI: 10.1051/mmnp/201510604
See this article

Mathematics of Darwin’s Diagram

N. Bessonov, N. Reinberg, V. Volpert and A. Morozov
Mathematical Modelling of Natural Phenomena 9 (3) 5 (2014)
DOI: 10.1051/mmnp/20149302
See this article

Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation

E A Levchenko, A V Shapovalov and A Yu Trifonov
Journal of Physics A: Mathematical and Theoretical 47 (2) 025209 (2014)
DOI: 10.1088/1751-8113/47/2/025209
See this article

Self-localized states in species competition

Pavel V. Paulau, Damià Gomila, Cristóbal López and Emilio Hernández-García
Physical Review E 89 (3) (2014)
DOI: 10.1103/PhysRevE.89.032724
See this article

Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations

Alexander Lorz, Sepideh Mirrahimi and Benoît Perthame
Communications in Partial Differential Equations 36 (6) 1071 (2011)
DOI: 10.1080/03605302.2010.538784
See this article

The evolutionary limit for models of populations interacting competitively via several resources

Nicolas Champagnat and Pierre-Emmanuel Jabin
Journal of Differential Equations 251 (1) 176 (2011)
DOI: 10.1016/j.jde.2011.03.007
See this article

Dynamical effects of nonlocal interactions in discrete-time growth-dispersal models with logistic-type nonlinearities

Ozgur Aydogmus, Yun Kang, Musa Emre Kavgaci and Huseyin Bereketoglu
Ecological Complexity 31 88 (2017)
DOI: 10.1016/j.ecocom.2017.04.001
See this article

On bounded positive stationary solutions for a nonlocal Fisher–KPP equation

Franz Achleitner and Christian Kuehn
Nonlinear Analysis: Theory, Methods & Applications 112 15 (2015)
DOI: 10.1016/j.na.2014.09.004
See this article

Traveling wave solutions in a nonlocal reaction-diffusion population model

Bang-Sheng Han and Zhi-Cheng Wang
Communications on Pure and Applied Analysis 15 (3) 1057 (2016)
DOI: 10.3934/cpaa.2016.15.1057
See this article

Patterns and Transitions to Instability in an Intraspecific Competition Model with Nonlocal Diffusion and Interaction

O. Aydogmus, M. Alfaro, N. Apreutesei, F. Davidson and V. Volpert
Mathematical Modelling of Natural Phenomena 10 (6) 17 (2015)
DOI: 10.1051/mmnp/201510603
See this article

Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics

Elyas Shivanian
Engineering Analysis with Boundary Elements 37 (12) 1693 (2013)
DOI: 10.1016/j.enganabound.2013.10.002
See this article

A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources

Nicolas Champagnat and Benoit Henry
The Annals of Applied Probability 29 (4) (2019)
DOI: 10.1214/18-AAP1446
See this article

Time-asymptotic convergence rates towards discrete steady states of a nonlocal selection-mutation model

Wenli Cai, Pierre-Emmanuel Jabin and Hailiang Liu
Mathematical Models and Methods in Applied Sciences 29 (11) 2063 (2019)
DOI: 10.1142/S0218202519500404
See this article

An efficient spectral-Galerkin method for solving two-dimensional nonlinear system of advection–diffusion–reaction equations

Farhad Fakhar-Izadi
Engineering with Computers 37 (2) 975 (2021)
DOI: 10.1007/s00366-019-00867-1
See this article

Sepideh Mirrahimi, Benoît Perthame, Emeric Bouin and Pierre Millien
159 (2011)
DOI: 10.1007/978-3-0348-0122-5_9
See this article

Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains

Nikolai Bessonov, Gennady Bocharov, Andreas Meyerhans, Vladimir Popov and Vitaly Volpert
Mathematics 8 (1) 117 (2020)
DOI: 10.3390/math8010117
See this article

Pattern formation in a predator-prey system characterized by a spatial scale of interaction

E. Brigatti, M. Oliva, M. Núñez-López, R. Oliveros-Ramos and J. Benavides
EPL (Europhysics Letters) 88 (6) 68002 (2009)
DOI: 10.1209/0295-5075/88/68002
See this article

Slow travelling wave solutions of the nonlocal Fisher-KPP equation

John Billingham
Nonlinearity 33 (5) 2106 (2020)
DOI: 10.1088/1361-6544/ab6f4f
See this article

Existence and Dynamics of Strains in a Nonlocal Reaction-Diffusion Model of Viral Evolution

Nikolai Bessonov, Gennady Bocharov, Andreas Meyerhans, Vladimir Popov and Vitaly Volpert
SIAM Journal on Applied Mathematics 81 (1) 107 (2021)
DOI: 10.1137/19M1282234
See this article

Doubly nonlocal reaction–diffusion equations and the emergence of species

M. Banerjee, V. Vougalter and V. Volpert
Applied Mathematical Modelling 42 591 (2017)
DOI: 10.1016/j.apm.2016.10.041
See this article

Stability of traveling waves of the nonlocal Fisher–KPP equation

Ge Tian, Zhi-Cheng Wang and Guo-Bao Zhang
Nonlinear Analysis 211 112399 (2021)
DOI: 10.1016/j.na.2021.112399
See this article

A Mathematical Study of the Influence of Hypoxia and Acidity on the Evolutionary Dynamics of Cancer

Giada Fiandaca, Marcello Delitala and Tommaso Lorenzi
Bulletin of Mathematical Biology 83 (7) (2021)
DOI: 10.1007/s11538-021-00914-3
See this article

Vitaly Volpert and Vitali Vougalter
2071 331 (2013)
DOI: 10.1007/978-3-642-35497-7_12
See this article

Nonlocal Reaction–Diffusion Equations in Biomedical Applications

M. Banerjee, M. Kuznetsov, O. Udovenko and V. Volpert
Acta Biotheoretica 70 (2) (2022)
DOI: 10.1007/s10441-022-09436-4
See this article