Issue |
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
|
|
---|---|---|
Page(s) | 213 - 236 | |
DOI | https://doi.org/10.1051/mmnp/20116309 | |
Published online | 16 May 2011 |
Time Spectral Method for Periodic and Quasi-Periodic Unsteady Computations on Unstructured Meshes
Department of Mechanical Engineering, University of
Wyoming, Laramie
WY
82072,
USA
⋆ Corresponding author. E-mail: mavripl@uwyo.edu
For flows with strong periodic content, time-spectral methods can be used to obtain time-accurate solutions at substantially reduced cost compared to traditional time-implicit methods which operate directly in the time domain. However, these methods are only applicable in the presence of fully periodic flows, which represents a severe restriction for many aerospace engineering problems. This paper presents an extension of the time-spectral approach for problems that include a slow transient in addition to strong periodic behavior, suitable for applications such as transient turbofan simulation or maneuvering rotorcraft calculations. The formulation is based on a collocation method which makes use of a combination of spectral and polynomial basis functions and results in the requirement of solving coupled time instances within a period, similar to the time spectral approach, although multiple successive periods must be solved to capture the transient behavior.
The implementation allows for two levels of parallelism, one in the spatial dimension, and another in the time-spectral dimension, and is implemented in a modular fashion which minimizes the modifications required to an existing steady-state solver. For dynamically deforming mesh cases, a formulation which preserves discrete conservation as determined by the Geometric Conservation Law is derived and implemented. A fully implicit approach which takes into account the coupling between the various time instances is implemented and shown to preserve the baseline steady-state multigrid convergence rate as the number of time instances is increased. Accuracy and efficiency are demonstrated for periodic and non-periodic problems by comparing the performance of the method with a traditional time-stepping approach using a simple two-dimensional pitching airfoil problem, a three-dimensional pitching wing problem, and a more realistic transitioning rotor problem.
Mathematics Subject Classification: 76H05 / 65M50 / 65M70 / 35Q30 / 35Q35
Key words: time spectral / periodic / unstructured mesh
© EDP Sciences, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.