Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 213 - 236
Published online 16 May 2011
  1. C. Canuto, M. .Y. Hussaini, A. Quarteroni, T. A. Zang. Spectral methods in fluid dynamics. Springer, 1987. [Google Scholar]
  2. P. Geuzaine, C. Grandmont, and C. Farhat. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. J. Comput. Phys., 191 (2003), No. 1, 206–227. [CrossRef] [Google Scholar]
  3. A.K. Gopinath, A. Jameson. Time spectral method for periodic unsteady computations over two- and three- dimensional bodies. AIAA Paper 2005-1220, Jan. 2005. [Google Scholar]
  4. D. Gottlieb, S. A. Orszag. Numerical analysis of spectral methods: theory and applications. CBMS-26, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1977. [Google Scholar]
  5. K. C. Hall, E. F. Crawley. Calculation of unsteady flows in turbomachinery using the linearized Euler equations. AIAA Journal, 27 (1989), No. 6, 777–787. [CrossRef] [Google Scholar]
  6. K. C. Hall, J. P. Thomas, W. S. Clark. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA Journal, 40 (2002), No. 5, 879–886. [CrossRef] [Google Scholar]
  7. J. Hesthaven, S. Gottlieb, D. Gottlieb. Spectral methods for time-dependent problems. Cambridge Monographs on Applied and Computational Mathematics, 2007. [Google Scholar]
  8. C. Lanczos. Discourse on Fourier series. Hafner, New York, 1966. [Google Scholar]
  9. D. J. Mavriplis. Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes. J. Comput. Phys., 145 (1998), No. 1, 141–165. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. J. Mavriplis, S. Pirzadeh. Large-scale parallel unstructured mesh computations for 3D high-lift analysis. AIAA Journal of Aircraft, 36 (1999), No. 6, 987–998. [CrossRef] [Google Scholar]
  11. D. J. Mavriplis, V. Venkatakrishnan. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes. International Journal of Computational Fluid Dynamics, 8 (1997), 247–263. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. J. Mavriplis, Z. Yang. Construction of the discrete geometric conservation law for high-order time accurate simulations on dynamic meshes. J. Comput. Phys., 213 (2006), No. 2, 557–573. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. McMullen, A. Jameson, J. J. Alonso. Acceleration of convergence to a periodic steady state in turbomachineary flows. AIAA Paper 2001-0152, 2001. [Google Scholar]
  14. M. McMullen, A. Jameson, J. J. Alonso. Application of a non-linear frequency domain solver to the Euler and Navier-Stokes equations. AIAA Paper 2002-0120, 2002. [Google Scholar]
  15. E. J. Nielsen, B. Diskin, N. K. Yamaleev. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids. AIAA Journal, 48 (2010), No. 6, 1195–1206. [Google Scholar]
  16. F. Sicot, G. Puigt, M. Montagnac. Block-Jacobi implicit algorithm for the time spectral method. AIAA Journal, 46 (2008), No. 12, 3080–3089. [CrossRef] [Google Scholar]
  17. P. R. Spalart, S. R. Allmaras. A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale, 1 (1994), 5–21. [Google Scholar]
  18. E. van der Weide, A. K. Gopinath, A. Jameson. Turbomachineary applications with the time spectral method. AIAA Paper 2005-4905, 2005. [Google Scholar]
  19. A. H. van Zuijlen, A. de Boer, H. Bijl. High order time integration through smooth mesh deformation for 3D fluid–structure interaction simulations. J. Comput. Phys., No. 2007 (224), No. 1, 414–430. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.