Free Access
Math. Model. Nat. Phenom.
Volume 6, Number 3, 2011
Computational aerodynamics
Page(s) 189 - 212
Published online 16 May 2011
  1. T. Barth. A 3–D upwind Euler solver for unstructured meshes. AIAA–91–1548–CP, 1991. [Google Scholar]
  2. T. Barth, D. Jespersen. The design and application of upwind schemes on unstructured meshes. AIAA Paper 89–0366, 1989. [Google Scholar]
  3. P–H. Cournède, C. Debiez, A. Dervieux. A positive MUSCL scheme for triangulations. INRIA Report 3465, 1998. [Google Scholar]
  4. P. Geuzaine. An implicit upwind finire volume method for compressible turbulent flows on unstructured meshes. PhD Thesis, Université de Liège, 1999. [Google Scholar]
  5. A. Harten, P.D. Lax, B. Van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25 (1983), 35–61. [Google Scholar]
  6. R. Hartmann, J. Held, T. Leicht, F. Prill. Discontinuous Galerkin methods for computational aerodynamics–3D adaptive flow simulation with the DLR PADGE code. Aerosp. Sci. Tech., in press (2010), DOI: 10.1016/j.ast.2010.04.002. [Google Scholar]
  7. O. Hassan, K. Morgan, E. J. Probert, J. Peraire. Unstructured tetrahedral mesh generation for three–dimensional viscous flows. Int. J. Num. Meth. Engg., 39 (1996), 549–567. [CrossRef] [Google Scholar]
  8. C. Hirsch. Numerical Computation of Internal and External Flows. Volume 2 John Wiley and Sons, Chichester, 1990. [Google Scholar]
  9. A. Jameson. Analysis and design of numerical schemes for gas dynamics. 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. CFD, 4 (1995), 171–218. [Google Scholar]
  10. A. Jameson, T. J. Baker, N. P. Weatherill. Calculation of Inviscid transonic flow over a complete aircraft. AIAA Paper–86–0103, 1986. [Google Scholar]
  11. A. Jameson, W. Schmidt, E. Turkel. Numerial solution of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes. AIAA Paper 81–1259, 1981. [Google Scholar]
  12. R. Löhner. Applied CFD Techniques. John Wiley and Sons, Chichester, 2001. [Google Scholar]
  13. H. Luo, J. D. Baum, R. Löhner. Edge–based finite element scheme for the Euler equations. AIAA J., 32 (1994), 1183–1190. [CrossRef] [Google Scholar]
  14. P. R. M. Lyra. Unstructured grid adaptive algorithms for fluid dynamics and heat conduction. PhD Thesis, University of Wales, Swansea, 1994. [Google Scholar]
  15. D. J. Mavriplis. Revisiting the least–squares procedure for gradient reconstruction on unstructured meshes. AIAA Paper 2003–3986, 2003. [Google Scholar]
  16. D. J. Mavriplis, V. Venkatakrishnan. A 3D agglomeration multigrid solver for the Reynolds–averaged Navier–Stokes equations on unstructured meshes. Int. J. Num. Meth. Fluids, 23 (1996), 527–544. [CrossRef] [Google Scholar]
  17. C. Michalak, C. Ollivier–Gooch. Accuracy preserving limiter for the high–order accurate solution of the Euler equations. J. Comput. Phys., 228 (2009), 8693–8711. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. M. Mitchell. Machine Learning. WCB–McGraw–Hill, 1997. [Google Scholar]
  19. K. Morgan, J. Peraire. Unstructured grid finite element methods for fluid mechanics. Rep. Prog. Phys., 61 (1998), 569–638. [CrossRef] [Google Scholar]
  20. K. Morgan, J. Peraire, J. Peiró, O. Hassan. The computation of three dimensional flows using unstructured grids. Comp. Meth. Appl. Mech. Engg, 87 (1991), 335–352. [CrossRef] [Google Scholar]
  21. J. Peiró, J. Peraire, K. Morgan. The generation of triangular meshes on surfaces. in C. Creasy and C. Craggs (eds), Applied Surface Modelling, Ellis–Horwood, Chichester, 25–33, 1989. [Google Scholar]
  22. J. Peraire, J. Peiró, K. Morgan. Finite element multigrid solution of Euler flows past installed aero-engines. Comp. Mech., 11 (1993), 433–451. [CrossRef] [Google Scholar]
  23. S. Pirzadeh. Viscous unstructured three–dimensional grids by the advancing–layers method. AIAA–94–0417, 1994. [Google Scholar]
  24. K. A. Sørensen. A multigrid accelerated procedure for the solution of compressible fluid flows on unstructured hybrid meshes. PhD Thesis, University of Wales, Swansea, 2002. [Google Scholar]
  25. K. A. Sørensen, O. Hassan, K. Morgan, N. P. Weatherill. A multigrid accelerated hybrid unstructured mesh method for 3D compressible turbulent flow. Comp. Mech., 31 (2003), 101–114. [CrossRef] [Google Scholar]
  26. P. R. Spalart, S. R. Allmaras. A one–equation turbulent model for aerodynamic flows. AIAA Paper 92–0439, 1992. [Google Scholar]
  27. T. E. Tezduyar. Finite element methods for flow problems with moving boundaries and interfaces. Arch. Comp. Meth. Engg., 8 (2001), 83–130. [CrossRef] [Google Scholar]
  28. E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction (2nd edn), Springer, Berlin, 1999. [Google Scholar]
  29. E. F Toro, M. Spruce, W. Speares. Restoration of the contact surface in the HLL–Riemann Solver. Shock Waves, 4 (1994), 25–34. [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. M. Vahdati, K. Morgan, J. Peraire. The computation of viscous compressible flows using an upwind algorithm and unstructured meshes. in S. N. Atluri (ed), Computational Nonlinear Mechanics in Aerospace Engineering, AIAA Progress in Aeronautics and Astronautics Series, AIAA, Washington, 479–505, 1992. [Google Scholar]
  31. N. P. Weatherill, O. Hassan. Efficient three–dimensional Delaunay triangulation with automatic boundary point creation and imposed boundary constraints. Int. J. Num. Meth. Engg., 37 (1994), 2003–2039. [Google Scholar]
  32. F. M. White. Viscous Fluid Flow (3rd edn). McGraw Hill, Boston, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.