Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 106 - 122
Published online 27 January 2009
  1. A. Agouzal, F. Oudin. A posteriori error estimator for finite volume methods. C. R. Acad. Sci. Paris, Sér. 1, 343 (2006), 349–354. [Google Scholar]
  2. S. Repin, S. Sauter, A. Smolianski. Two-Sided a posteriori error estimates for mixed formulations of elliptic problems. Preprint 21-2005, Institute of Mathematics, University of Zurich (to appear in SIAM J. Numer. Anal.). [Google Scholar]
  3. R. Verfürth. A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley, Teubner, New York, 1996. [Google Scholar]
  4. M. Vohralík. A posteriori error estimates for finite volume and mixed finite element discretizations of convection-diffusion-reaction equations. ESAIM: Proc., 18 (2007), 57–69. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.