Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 123 - 146
DOI https://doi.org/10.1051/mmnp/20094106
Published online 27 January 2009
  1. L. Baillet, T. Sassi. Simulations numériques de différentes méthodes d'éments finis pour les problémes contact avec frottement. C. R. Acad. Sci, Paris, Ser. IIB, 331 (2003),789–796. [Google Scholar]
  2. G. Bayada, J. Sabil, T. Sassi. Algorithme de décomposition de domaine pour un probléme de Signorini sans frottement. C. R. Acad. Sci. Paris, Ser. I335 (2002), 381–386. [Google Scholar]
  3. G. Bayada, J. Sabil, T. Sassi. A Neumann-Neumann domain decomposition algorithm for the Signorini problem. Appl. Math. Letters, 17 (2004), 1153–1159. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. E. Bjorstad, O. B. Widlund. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numerical Analysis, 23 (1986), No. 6, 1097–1120. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. W. Christensen, A. Klarbring, J. S. Pang, N. Strömberg. Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg., 42 (1998), No. 1, 145–173. [CrossRef] [MathSciNet] [Google Scholar]
  6. Z. Dostál, J. Schöberl. Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Comput. Optim. Appl., 30 (2005), No. 1, 23–44. [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Eck, B. Wohlmuth. Convergence of a Contact-Neumann iteration for the solution of two-body contact problems. Mathematical Models and Methods in Applied Sciences, 13 (2003), No. 8, 1103-1118. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Glowinski, J. L. Lions, R. Trémoliére. Numerical analysis of variational inequalities. Studies in Mathematics and its Applications, Volume VIII, North-Holland, Amsterdam, 1981. [Google Scholar]
  9. G. H. Golub, C. F. Van Loan. Matrix computation. The Johns Hopkins University Press, Baltimore, 1996. [Google Scholar]
  10. J. Haslinger, Z. Dostál, R. Kučera. On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg., 191 (2002), No. 21-22, 2261–2281. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, Volume IV, Part 2, North Holland, Amsterdam, 1996. [Google Scholar]
  12. M. A. Ipopa. Algorithmes de Décomposition de Domaine pour les problémes de Contact: Convergence et simulations numériques. Thesis, Université de Caen, 2008. [Google Scholar]
  13. N. Kikuchi, J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988. [Google Scholar]
  14. R. Kornhuber, R. Krause. Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci., 4 (2001), No. 1, 9–20., [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Krause, B. Wohlmuth. A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci., 5 (2002), No. 3, 139–148. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Le Tallec. Domain decomposition methods in computational mechanics. Comput. Mech. Adv., 1 (1994), No. 2, 121–220. [MathSciNet] [Google Scholar]
  17. J. Sabil. Modélisation et méthodes de décomposition de domaine pour des problémes de contact. Thesis, INSA de Lyon, 2004. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.