Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 147 - 162
DOI https://doi.org/10.1051/mmnp/20094107
Published online 27 January 2009
  1. L.-E. Andersson. Existence results for quasistatic contact problems with Coulomb friction, Appl. Math. Optim., 42 (2000), 169–202. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.R. Barber, P. Hild. Non-uniqueness, eigenvalue solutions and wedged configurations involving Coulomb friction, Proceedings of the IJTC 2004, ASME/STLE International Joint Tribology Conference, Long Beach California, USA, 24-27 October 2004, Part A, 127–132. [Google Scholar]
  3. C. Eck, J. Jarušek. Existence results for the static contact problem with Coulomb friction, Math. Models Meth. Appl. Sci., 8 (1998), 445–468. [Google Scholar]
  4. C. Eck, J. Jarušek, M. Krbec. Unilateral contact problems: variational methods and existence theorems, Pure and Applied Mathematics 270, CRC Press, 2005. [Google Scholar]
  5. W. Han, M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, International Press, 2002. [Google Scholar]
  6. J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, eds. P.G. Ciarlet and J. L. Lions, North Holland, 1996, pp. 313–485. [Google Scholar]
  7. R. Hassani, I. Ionescu, E. Oudet. Critical friction for wedged configurations, Int. J. Solids Structures, 44 (2007), 6187–6200. [CrossRef] [Google Scholar]
  8. R. Hassani, I. Ionescu, N.-D. Sakki. Unstable perturbation of the equilibrium under Coulomb friction. Nonlinear eigenvalue analysis, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2377–2389. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Hild. Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity, Q. Jl. Mech. Appl. Math., 57 (2004), 225–235. [CrossRef] [Google Scholar]
  10. P. Hild. Multiple solutions of stick and separation type in the Signorini model with Coulomb friction, Z. Angew. Math. Mech., 85 (2005), 673–680. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Klarbring, A. Mikelíc, M. Shillor. Frictional contact problems with normal compliance, Int. J. Engng. Sci., 26 (1988), 811–832. [Google Scholar]
  12. A. Klarbring, A. Mikelíc, M. Shillor. On friction problems with normal compliance, Nonlinear Anal., 13 (1989), 935–955. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.A.C. Martins, J.T. Oden. Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Anal., 11 (1987), 407–428. [Google Scholar]
  14. J.A.C. Martins, M.D.P. Monteiro Marques (Eds.) Contact Mechanics, Proceedings of the third Contact Mechanics International Symposium, Solid Mechanics and its Applications 103, Kluwer, 2002. [Google Scholar]
  15. C. Naéjus, A. Cimetière. Sur la formulation variationnelle du problème de Signorini avec frottement de Coulomb, C. R. Acad. Sci. Sér. I Math., 323 (1996), 307–312. [Google Scholar]
  16. J. Nečas, J. Jarušek, J. Haslinger. On the solution of the variational inequality to the Signorini problem with small friction, Bolletino U.M.I., 17 (1980), No. 5, 796–811. [Google Scholar]
  17. J.T. Oden, J.A.C. Martins. Models and computational methods for dynamic friction phenomena, Comput. Methods. Appl. Mech. Engrg., 52 (1985), 527–634. [Google Scholar]
  18. Y. Renard. A uniqueness criterion for the Signorini problem with Coulomb friction, SIAM J. Math. Anal., 38 (2006), 458–467. [Google Scholar]
  19. R. Rocca, M. Cocu. Existence and approximation of a solution to quasistatic Signorini problem with local friction, Int. J. Engrg. Sci., 39 (2001), 1233–1255. [CrossRef] [Google Scholar]
  20. M. Shillor (Ed.) Recent advances in contact mechanics, Mathl. Comput. Modelling, 28 (1998), No. 4–8, 1–534. [Google Scholar]
  21. P. Wriggers, U. Nackenhorst (Eds.) Analysis and simulation of contact problems, Proceedings of the fourth Contact Mechanics International Symposium, Lecture Notes in Applied and Computational Mechanics 27, Springer, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.