Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 1, 2009
Modelling and numerical methods in contact mechanics
Page(s) 163 - 182
DOI https://doi.org/10.1051/mmnp/20094108
Published online 27 January 2009
  1. R.A. Adams. Sobolev spaces, Academic Press, 1975. [Google Scholar]
  2. P. Alart, A. Curnier. Generalisation of Newton type methods to contact problems with friction, J. Mecan. Theor. Appl., 7 (1988), 67–82. [Google Scholar]
  3. I. Babuška. The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179–192. [CrossRef] [Google Scholar]
  4. H.J.C. Barbosa, T.J.R. Hughes. The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Mech. Engrg., 85 (1991), 109–128. [CrossRef] [MathSciNet] [Google Scholar]
  5. H.J.C. Barbosa, T.J.R. Hughes. Boundary Lagrange multipliers in finite element methods: error analysis in natural norms, Numer. Math., 62 (1992), 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  6. H.J.C. Barbosa, T.J.R. Hughes. Circumventing the Babuška-Brezzi condition in mixed finite element approximations of elliptic variational inequalities, Comput. Methods Appl. Mech. Engrg., 97 (1992), 193–210. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Becker, P. Hansbo, R. Stenberg. A finite element method for domain decomposition with non-matching grids, Math. Model. Numer. Anal., 37 (2003), 209–225. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. Z. Belhachmi, F. Ben Belgacem. Quadratic finite element approximation of the Signorini problem, Math. Comp., 72 (2003), 83–104. [CrossRef] [MathSciNet] [Google Scholar]
  9. Z. Belhachmi, J.M. Sac-Epée, J. Sokolowski. Mixed finite element methods for smooth domain formulation of crack problems, SIAM J. Numer. Anal., 43 (2005), 1295–1320. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Ben Belgacem, Y. Renard. Hybrid finite element methods for the Signorini problem, Math. Comp., 72 (2003), 1117–1145. [CrossRef] [MathSciNet] [Google Scholar]
  11. S.C. Brenner, L.R. Scott. The mathematical theory of finite element methods, Springer-Verlag, 2002. [Google Scholar]
  12. F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rev. Franç. Automatique Inform. Rech. Opér., Sér. Rouge Anal. Numér., 8 (1974), 129–151. [Google Scholar]
  13. F. Brezzi, M. Fortin. Mixed and hybrid finite element methods, Springer, 1991. [Google Scholar]
  14. Z. Chen. On the augmented Lagrangian approach to Signorini elastic contact problem, Numer. Math., 88 (2001), 641–659. [CrossRef] [MathSciNet] [Google Scholar]
  15. P.G. Ciarlet. The finite element method for elliptic problems, in Handbook of Numerical Analysis, eds. P.G. Ciarlet and J.L. Lions, North Holland, 2 (1991), 17–352. [Google Scholar]
  16. M. Cocou, R. Roccou. Numerical analysis of quasistatic unilateral contact problems with local friction, SIAM J. Numer. Anal., 39 (2001), 1324–1342. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Coorevits, P. Hild, M. Hjiaj. A posteriori error control of finite element approximations for Coulomb's frictional contact, SIAM J. Sci. Comput., 23 (2001), 976–999. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Coorevits, P. Hild, K. Lhalouani, T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies, Math. Comp., 71 (2002), 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Duvaut. Problèmes unilatéraux en mécanique des milieux continus, in Actes du congrès international des mathématiciens (Nice 1970), Gauthier-Villars, 3 (1971), 71–77. [Google Scholar]
  20. G. Duvaut, J.L. Lions. Les inéquations en mécanique et en physique, Dunod, 1972. [Google Scholar]
  21. C. Eck, J. Jarušek. Existence results for the static contact problem with Coulomb friction, Math. Models Meth. Appl. Sci., 8 (1998), 445–468. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. Eck, J. Jarušek, M. Krbec. Unilateral contact problems: variational methods and existence theorems, Pure and Applied Mathematics, CRC Press, 270 (2005). [Google Scholar]
  23. W. Han, M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, International Press, 2002. [Google Scholar]
  24. P. Hansbo, C. Lovadina, I. Perugia, G. Sangalli. A Lagrange multiplier method for the finite element solution of elliptic interface problems using nonmatching meshes, Numer. Math., 100 (2005), 91–115. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Haslinger. Approximation of the Signorini problem with friction, obeying the Coulomb law, Math. Methods Appl. Sci., 5 (1983), 422–437. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Eds. P.G. Ciarlet and J.-L. Lions, North Holland, 4 (1996), 313–485. [Google Scholar]
  27. J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite element method, submitted. [Google Scholar]
  28. R. Hassani, P. Hild, I. Ionescu, N.D. Sakki. A mixed finite element method and solution multiplicity for Coulomb frictional contact, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4517–4531. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Heintz, P. Hansbo. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction, Comput. Methods Appl. Mech. Engrg., 195 (2006), 4323–4333. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Hild. Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity, Q. Jl. Mech. Appl. Math., 57 (2004), 225–235. [CrossRef] [Google Scholar]
  31. P. Hild. Multiple solutions of stick and separation type in the Signorini model with Coulomb friction, Z. Angew. Math. Mech., 85 (2005), 673–680. [CrossRef] [MathSciNet] [Google Scholar]
  32. P. Hild, P. Laborde. Quadratic finite element methods for unilateral contact problems, Appl. Numer. Math., 41 (2002), 401–421. [CrossRef] [MathSciNet] [Google Scholar]
  33. P. Hild, Y. Renard. An error estimate for the Signorini problem with Coulomb friction approximated by the finite elements, SIAM J. Numer. Anal., 45 (2007), 2012–2031. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Hild, Y. Renard. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, submitted. [Google Scholar]
  35. J. Jarušek. Contact problems with bounded friction. Coercive case, Czechoslovak. Math. J., 33 (1983), 237–261. [MathSciNet] [Google Scholar]
  36. N. Kikuchi, J.T. Oden. Contact problems in elasticity : a study of variational inequalities and finite element methods, SIAM, 1988. [Google Scholar]
  37. D. Kinderlehrer, G. Stampacchia. An introduction to variational inequalities and their applications, Pure and Applied mathematics, Academic Press, New York-London, 1980. [Google Scholar]
  38. T. Laursen. Computational contact and impact mechanics, Springer, 2002. [Google Scholar]
  39. J.–L. Lions, E. Magenes. Problèmes aux limites non homogènes, Dunod, 1968. [Google Scholar]
  40. V. Lleras. Thesis, in preparation. [Google Scholar]
  41. V.G. Maz'ya, T.O. Shaposhnikova. Theory of multipliers in spaces of differentiable functions, Pitman, 1985. [Google Scholar]
  42. N. Moës, J. Dolbow, T. Belytschko. A finite element method for cracked growth without remeshing, Int. J. Numer. Meth. Engng., 46 (1999), 131–150. [CrossRef] [Google Scholar]
  43. J. Nečas, J. Haslinger, J. Jarušek. On the solution of the variational inequality to the Signorini problem with small friction, Bolletino U. M. I., 17 (1980), 796–811. [Google Scholar]
  44. J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Univ. Hamburg, 36 (1971), 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  45. D.R.J. Owen, D. Peric. Computational model for 3D contact problems with friction based on the penalty method, Int. J. Num. Meth. Eng., 35 (1992), 1289–1309. [CrossRef] [Google Scholar]
  46. Y. Renard. A uniqueness criterion for the Signorini problem with Coulomb friction, SIAM J. Math. Anal., 38 (2006), 452–467. [CrossRef] [MathSciNet] [Google Scholar]
  47. M. Shillor, M. Sofonea, J.J. Telega. Models and analysis of quasistatic contact. Variational methods, Springer, 2004. [Google Scholar]
  48. R. Stenberg. On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math., 63 (1995), 139–148. [CrossRef] [MathSciNet] [Google Scholar]
  49. P. Wriggers. Computational Contact Mechanics, Wiley, 2002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.