Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 2, 2009
Delay equations in biology
Page(s) 68 - 91
Published online 26 March 2009
  1. M. Adimy, F. Crauste. Global stability of a partial differential equation with distributed delay due to celluar replication. Nonlinear Analysis, 54 (2003), No. 8, 1469-1491. [CrossRef] [MathSciNet]
  2. M. Adimy, F. Crauste. Existence, positivity and stability for a nonlinear model of celluar proliferation. Nonlinear Analysis: Real World Applications, 6 (2005), No. 2, 337-366. [CrossRef] [MathSciNet]
  3. M. Adimy, F. Crauste, L. Pujo-Menjouet. On the stability of a maturity structured model of cellular proliferation. Discret. Cont. Dyn. Sys. Ser. A, 12 (2005), No. 3, 501-522.
  4. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 1328-1352 .
  5. M. Adimy, Pujo-Menjouet. Asymptotic behaviour of a singular transport equation modeling cell division. Discret. Cont. Dyn. Sys. B, 3 (2003), No. 3, 439-456. [CrossRef]
  6. S. Bernard, J. Belair, M.C. Mackey. Oscillations in cyclical neutropenia: New evidence based on mathematical modeling. J. Theor. Biol., 223 (2003), No. 3, 283-298. [CrossRef] [PubMed]
  7. S. Bernard, J. Belair, M.C. Mackey. Bifurcations in a white-blood-cell production model. C. R. Biologies, 327 (2004), No. 3, 201-210. [CrossRef]
  8. F.J. Burns, I.F. Tannock. On the existence of a G0 phase in the cell cycle. Cell. Tissue Kinet., 19 (1970), No. 4, 321-334.
  9. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), No. 2, 117-132.
  10. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), No. 2, 133-146.
  11. J.J. Ferrell. Tripping the switch fantastic: How protein kinase cascade convert graded into switch-like outputs. TIBS, 21 (1996), No. 12, 460-466.
  12. K. Gopalsamy, B.G. Zhang. On delay differential equation with impulses. J. Math. Anal. Appl., 139 (1989), No. 11, 110-122. [CrossRef] [MathSciNet]
  13. I. Gyori, G. Ladas. Oscillation theory of delay differential equations with applications. Clarendon, Oxford, 1991.
  14. J. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Applied Mathematical Sciences 99. Springer-Verlag, New York, 1993.
  15. C. Haurie, D.C. Dale, M.C. Mackey. Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models. Blood, 92 (1998), No. 8, 2629-2640. [PubMed]
  16. Y. Kuang. Delay differential equations with application in population dynamics. Academic Press. Boston, MA, 1993.
  17. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov. Theory of impulsive differential equations. World Scientific. Singapore, 1989.
  18. M. Loeffler, H.E. Wichmann. A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results. Cell Tissue Kinet., 13 (1980), No. 5, 543-561. [PubMed]
  19. M.C. Mackey. Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941-956. [PubMed]
  20. M.C. Mackey. Dynamic hematological disorders of stem cell origin. In Biophysical and Biochemical Information Transfer in Recognition, J.G. Vassileva-Popova and E.V. Jensen, eds., Plenum Publishing, New York, 1979, 373-409.
  21. M.C. Mackey. Mathematical models of hematopoietic cell replication and control. in The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, Prentice-Hall, Upper Saddle River, NJ, 1997, 149-178.
  22. M.C. Mackey, L. Pujo-Menjouet, J. Wu. Period oscillations of blood cell populations in periodic myelogenous leukemia. SIAM J. Math. Anal., 38 (2006), No. 1, 166-187. [CrossRef] [MathSciNet]
  23. M.C. Mackey, A. Rey. Propagation of population pulses and fronts in a cell replication problem: non-locality and dependence on the initial function. Physica D, 86 (1995), No. 3, 373-395. [CrossRef]
  24. M.C. Mackey, R. Rudnicki. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Bio., 33 (1994), No. 1, 89-109. [CrossRef] [MathSciNet] [PubMed]
  25. L. Pujo-Menjouet, M.C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biologies, 327 (2004), No. 3, 235-244. [CrossRef] [PubMed]
  26. L. Pujo-Menjouet, S. Bernard, M.C. Mackey. Long Period Oscillations in a G0 Model of Hematopoietic Stem Cells. SIAM J. Appl. Dynam. Systems, 4 (2005), No. 2, 312-332. [CrossRef]
  27. S.I. Rubino, J.L. Lebowitz. A mathematical model of neutrophil production and control in normal man. J. Math. Bio., 1 (1975), No. 3, 187-225. [CrossRef] [PubMed]
  28. L. Sachs. The molecular control of hemopoiesis and leukemia. C. R. Acad. Sci. Paris, 316 (1993), No. 9, 882-891.
  29. S.H. Saker, J.O. Alzabut. Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model. Nonlinear Analysis: real world applications, 8 (2007), No. 4, 1029-1039. [CrossRef] [MathSciNet]
  30. G.F. Webb. Theory of Nonlinear Age-dependent Population Dynamics. Monogr. Textbooks Pure Appl. Math., 89, Dekker, New York, 1985.
  31. J. Yan, A. Zhao. Oscillation and stability of linear impulsive delay differential equations. J. Math. Anal. Appl., 227 (1998), No. 1, 187-194. [CrossRef] [MathSciNet]
  32. J. Yan, A. Zhao, J.J. Nieto. Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra Systems. Mathematical and Computer Modelling, 40 (2004), No 5-6, 509-518.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.