Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 2, 2009
Delay equations in biology
Page(s) 68 - 91
DOI https://doi.org/10.1051/mmnp/20094204
Published online 26 March 2009
  1. M. Adimy, F. Crauste. Global stability of a partial differential equation with distributed delay due to celluar replication. Nonlinear Analysis, 54 (2003), No. 8, 1469-1491. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Adimy, F. Crauste. Existence, positivity and stability for a nonlinear model of celluar proliferation. Nonlinear Analysis: Real World Applications, 6 (2005), No. 2, 337-366. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Adimy, F. Crauste, L. Pujo-Menjouet. On the stability of a maturity structured model of cellular proliferation. Discret. Cont. Dyn. Sys. Ser. A, 12 (2005), No. 3, 501-522. [Google Scholar]
  4. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 1328-1352 . [Google Scholar]
  5. M. Adimy, Pujo-Menjouet. Asymptotic behaviour of a singular transport equation modeling cell division. Discret. Cont. Dyn. Sys. B, 3 (2003), No. 3, 439-456. [CrossRef] [Google Scholar]
  6. S. Bernard, J. Belair, M.C. Mackey. Oscillations in cyclical neutropenia: New evidence based on mathematical modeling. J. Theor. Biol., 223 (2003), No. 3, 283-298. [CrossRef] [PubMed] [Google Scholar]
  7. S. Bernard, J. Belair, M.C. Mackey. Bifurcations in a white-blood-cell production model. C. R. Biologies, 327 (2004), No. 3, 201-210. [CrossRef] [Google Scholar]
  8. F.J. Burns, I.F. Tannock. On the existence of a G0 phase in the cell cycle. Cell. Tissue Kinet., 19 (1970), No. 4, 321-334. [Google Scholar]
  9. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), No. 2, 117-132. [Google Scholar]
  10. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), No. 2, 133-146. [Google Scholar]
  11. J.J. Ferrell. Tripping the switch fantastic: How protein kinase cascade convert graded into switch-like outputs. TIBS, 21 (1996), No. 12, 460-466. [Google Scholar]
  12. K. Gopalsamy, B.G. Zhang. On delay differential equation with impulses. J. Math. Anal. Appl., 139 (1989), No. 11, 110-122. [CrossRef] [MathSciNet] [Google Scholar]
  13. I. Gyori, G. Ladas. Oscillation theory of delay differential equations with applications. Clarendon, Oxford, 1991. [Google Scholar]
  14. J. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Applied Mathematical Sciences 99. Springer-Verlag, New York, 1993. [Google Scholar]
  15. C. Haurie, D.C. Dale, M.C. Mackey. Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models. Blood, 92 (1998), No. 8, 2629-2640. [PubMed] [Google Scholar]
  16. Y. Kuang. Delay differential equations with application in population dynamics. Academic Press. Boston, MA, 1993. [Google Scholar]
  17. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov. Theory of impulsive differential equations. World Scientific. Singapore, 1989. [Google Scholar]
  18. M. Loeffler, H.E. Wichmann. A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results. Cell Tissue Kinet., 13 (1980), No. 5, 543-561. [PubMed] [Google Scholar]
  19. M.C. Mackey. Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941-956. [PubMed] [Google Scholar]
  20. M.C. Mackey. Dynamic hematological disorders of stem cell origin. In Biophysical and Biochemical Information Transfer in Recognition, J.G. Vassileva-Popova and E.V. Jensen, eds., Plenum Publishing, New York, 1979, 373-409. [Google Scholar]
  21. M.C. Mackey. Mathematical models of hematopoietic cell replication and control. in The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, Prentice-Hall, Upper Saddle River, NJ, 1997, 149-178. [Google Scholar]
  22. M.C. Mackey, L. Pujo-Menjouet, J. Wu. Period oscillations of blood cell populations in periodic myelogenous leukemia. SIAM J. Math. Anal., 38 (2006), No. 1, 166-187. [CrossRef] [MathSciNet] [Google Scholar]
  23. M.C. Mackey, A. Rey. Propagation of population pulses and fronts in a cell replication problem: non-locality and dependence on the initial function. Physica D, 86 (1995), No. 3, 373-395. [CrossRef] [Google Scholar]
  24. M.C. Mackey, R. Rudnicki. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Bio., 33 (1994), No. 1, 89-109. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  25. L. Pujo-Menjouet, M.C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biologies, 327 (2004), No. 3, 235-244. [CrossRef] [PubMed] [Google Scholar]
  26. L. Pujo-Menjouet, S. Bernard, M.C. Mackey. Long Period Oscillations in a G0 Model of Hematopoietic Stem Cells. SIAM J. Appl. Dynam. Systems, 4 (2005), No. 2, 312-332. [CrossRef] [Google Scholar]
  27. S.I. Rubino, J.L. Lebowitz. A mathematical model of neutrophil production and control in normal man. J. Math. Bio., 1 (1975), No. 3, 187-225. [CrossRef] [PubMed] [Google Scholar]
  28. L. Sachs. The molecular control of hemopoiesis and leukemia. C. R. Acad. Sci. Paris, 316 (1993), No. 9, 882-891. [Google Scholar]
  29. S.H. Saker, J.O. Alzabut. Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model. Nonlinear Analysis: real world applications, 8 (2007), No. 4, 1029-1039. [CrossRef] [MathSciNet] [Google Scholar]
  30. G.F. Webb. Theory of Nonlinear Age-dependent Population Dynamics. Monogr. Textbooks Pure Appl. Math., 89, Dekker, New York, 1985. [Google Scholar]
  31. J. Yan, A. Zhao. Oscillation and stability of linear impulsive delay differential equations. J. Math. Anal. Appl., 227 (1998), No. 1, 187-194. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Yan, A. Zhao, J.J. Nieto. Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra Systems. Mathematical and Computer Modelling, 40 (2004), No 5-6, 509-518. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.