Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 4, Number 3, 2009
Cancer modelling (Part 2)
|
|
---|---|---|
Page(s) | 134 - 155 | |
DOI | https://doi.org/10.1051/mmnp/20094306 | |
Published online | 05 June 2009 |
- B.P. Ayati, G.F. Webb, A.R.A Anderson. Computational methods and results for structured mutliscale methods of tumor invasion. Multiscale Model. Simul., 5 (2006), 1–20. [CrossRef] [MathSciNet] [Google Scholar]
- H.M. Byrne. The importance of intercellular adhesion in the development of carcinomas. I. MA J. Math. Appl. Med. Biol., 14 (1997), 305–323. [CrossRef] [Google Scholar]
- H.M. Byrne, M.A.J. Chaplain. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci., 130 (1995), 130–151. [Google Scholar]
- H.M. Byrne, M.A.J. Chaplain. Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Modeling, 24 (1996), 1–17. [CrossRef] [Google Scholar]
- X. Chen, S. Cui, A. Friedman. A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior. Trans. Amer. Math. Soc., 357 (2005), 4771–4804. [CrossRef] [MathSciNet] [Google Scholar]
- X. Chen, A. Friedman. A free boundary problem for elliptic-hyperbolic system: An application to tumor growth. SIAM J. Math. Anal., 35 (2003), 974–986. [CrossRef] [MathSciNet] [Google Scholar]
- S. Cui, A. Friedman. A free boundary problem for a singular system of differential equations: An application to a model of tumor growth. Trans. Amer. Math. Soc., 355 (2003), 3537–3590. [CrossRef] [MathSciNet] [Google Scholar]
- S. Cui, A. Friedman. A hyperbolic free boundary problem modeling tumor growth. Interfaces Free Bound., 5 (2003) , 159–182. [Google Scholar]
- S.J.H. Franks, H.M. Byrne, J.P. King, J.C.E. Underwood, C.E. Lewis. Modelling the early growth of ductal carcinoma in situ of the breast. J. Math. Biology, 47 (2003), 424–452. [Google Scholar]
- S.J.H. Franks, H.M. Byrne, J.P. King, J.C.E. Underwood, C.E. Lewis. Modelling the growth of comedo ductal carcinoma in situ. Mathematical Medicine & Biology, 20 (2003), 277–308. [Google Scholar]
- S.J.H. Franks, H.M. Byrne, J.C.E. Underwood, C.E. Lewis. Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast. J. Theoretical Biology, 232 (2005), 523–543. [Google Scholar]
- S.J.H. Franks, J.P. King. Interactions between a uniformly proliferating tumour and its surroundings: Uniform material properties. Mathematical Medicine & Biology, 20 (2003), 47–89. [Google Scholar]
- A. Friedman. Cancer models and their mathematical analysis. In: Tutorials in Mathematical Biosciences III. Lecture Notes in Mathematics, 1872, 223-246. Springer, Berlin, 2006. [Google Scholar]
- A. Friedman. A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth. Interfaces and Free Boundaries, 8 (2006), 247–261. [Google Scholar]
- A. Friedman. Mathematical analysis and challenges arising from models of tumor growth. Math. Models & Methods in Applied Sciences, 17 (2007), 1751–1772. [CrossRef] [Google Scholar]
- A. Friedman. A multiscale tumor model. Interfaces and Free Boundaries, 10 (2008), 245–262. [Google Scholar]
- A. Friedman, B. Hu. The role of oxygen in tissue maintenance: Mathematical modeling and qualitative analysis. Math. Mod. Meth. Appl. Sci., 18 (2008), 1–33. [CrossRef] [Google Scholar]
- A. Friedman, B. Hu, C-Y. Kao. Cell cycle control at the first restriction point and its effect on tissue growth. Submitted for publication. [Google Scholar]
- A. Friedman, F. Reitich. Quasi-static motion of a capillary drop, II: The three-dimensional case. J. Diff. Eqs., 186 (2002), 509–557. [CrossRef] [Google Scholar]
- Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J.P. Freyer. A multiscale model for avascular tumor growth. Biophysical Journal, 89 (2005), 3884–3894. [Google Scholar]
- N. Komaraova. Stochastic modeling of loss- and gain-of-function mutation in cancer. Bull. Math. Biology, 17 (2007), 1647–1673. [Google Scholar]
- H.A. Levine, S.L. Pamuk, B.D. Sleeman, M. Nilsen-Hamilton. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biology, 63 (2001), 801–863. [Google Scholar]
- G. Lolas. Mathematical modelling of proteolysis and cancer cell invasion of tissue. In: Tutorials in Mathematical Biosciences III, Lecture Notes in Mathematics, 1872, 77–130. Springer, Berlin, 2006. [Google Scholar]
- N. Mantzaris, S. Webb, H.G. Othmer. Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol., 49 (2004), 87–111. [Google Scholar]
- M.A. Nowak, K. Sigmund. Evolutionary dynamics of biological games. Science, 303 (2004), 793–799. [CrossRef] [PubMed] [Google Scholar]
- G.J. Pettet, C.P. Please, M.J. Tindall, D.L.S. McElwain. The migration of cells in multicell tumor spheroids. Bull. Math. Biol., 63 (2001), 231–257. [CrossRef] [PubMed] [Google Scholar]
- R. Ribba, T. Colin, S. Schnell. A multiscale model of cancer, and its use in analyzing irradiation therapies. Theoretical Biology and Medical Modeling, 3 (2006), No. 7, 1–19. [Google Scholar]
- V.A. Solonnikov. On quasistationary approximation in the problem of a capillary drop. In: J. Escher & G. Simonett (Eds.), Progress in Nonlinear Differential Equations and Their Applications, 35, 643-671. Birkhäuser Verlag, Basel, 1999. [Google Scholar]
- M.M. Vainberg, V.A. Trenogin. Theory of branching solutions of non-linear equations. Nordhoff International Publishing, Leyden, 1974. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.