Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 3, 2009
Cancer modelling (Part 2)
Page(s) 117 - 133
Published online 05 June 2009
  1. D. Hanahan, R. Weinberg. The hallmarks of cancer. Cell, 100 (2000), No.1, 57–70. [Google Scholar]
  2. P. Armitage, R. Doll. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer, 8 (1954), No.1, 1–12. [Google Scholar]
  3. W.C. Black, H.G. Welch. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med, 328 (1993), No.17, 1237–1243. [Google Scholar]
  4. T. Lapidot, C. Sirard, B. Murdoch, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367 (1994), No. 6464, 645–648. [Google Scholar]
  5. D. Bonnet, J.E. Dick. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3 (1997), No. 7, 730–737. [Google Scholar]
  6. M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 100 (2003), No.7, 3983–3988. [Google Scholar]
  7. J.E. Dick. Breast cancer stem cells revealed. Proc Natl Acad Sci USA, 100 (2003), No.7, 3547–3549. [Google Scholar]
  8. S.K. Singh, C. Hawkins, I.D. Clarke. Identification of a cancer stem cell in human brain tumors. Cancer Res, 63 (2003), No.18, 5821–5828. [Google Scholar]
  9. S.K. Singh, I.D. Clarke, M. Terasaki, et al. Identification of human brain tumour initiating cells. Nature, 432 (2004), No.7015, 396–401. [Google Scholar]
  10. D. Fioriti, M. Mischitelli, F. Di Monaco, et al. Cancer stem cells in prostate adenocarcinoma: a target for new anticancer strategies. J. Cell Physiol., 216 (2008), No.3, 571–575. [Google Scholar]
  11. N.J. Maitland, T. Colling. Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol., 26 (2008), No.17, 2862–2870. [Google Scholar]
  12. M. Todaro, M. Perez Alea, A.B. Di Stefano, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell stem cell, 1 (2007), No.4, 389–402. [Google Scholar]
  13. P. Cammareri, Y. Lombardo, M.G. Francipane, et al. Isolation and culture of colon cancer stem cells. Methods Cell Biol., 86 (2008), 311–324. [CrossRef] [PubMed] [Google Scholar]
  14. S.J. Morrison, J. Kimble. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 41 (2006), No. 7097, 1068–1074. [Google Scholar]
  15. R. Reya, R., S.J. Morrison, M.F. Clarke, I.L. Weissman. Stem cells, cancer, and cancer stem cells. Nature, 414 (2001), No.6859, 105–111. [Google Scholar]
  16. D. Dingli, F. Michor. Successful therapy must eradicate cancer stem cells. Stem Cells, 24 (2006), No.12, 2603–2610. [Google Scholar]
  17. R.T. Prehn. The inhibition of tumor growth by tumor mass. Cancer Res, 51 (1991), No.1, 2–4. [Google Scholar]
  18. J. Folkman. Tumor angiogenesis: therapeutic implications. N Engl J Med, 285 (1971), No.21, 1182–1186. [Google Scholar]
  19. G.N. Naumov, E. Bender, D. Zurakowski, et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst, 98 (2006), No.5, 316–325. [Google Scholar]
  20. M.H. Barcellos-Hoff. It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment. Journal of mammary gland biology and neoplasia, 6 (2001), No.2, 213–221. [Google Scholar]
  21. R. Gatenby, R.J. Gillies. A microenvironmental model of carcinogenesis. Nat Rev Cancer, 8 (2008), No.1, 56–61. [Google Scholar]
  22. A. Brú, S. Albertos, J.L. Subiza et al. The universal dynamics of tumor growth. Biophys J 85 (2003), No.5, 2948–2961. [Google Scholar]
  23. J. Galle, M. Hoffmann, G. Aust. From single cells to tissue architecture – a bottom-up approach to modelling the spatio-temporal organization of complex multi-cellular systems. J Math Biol 58 (2009), 261–283. [Google Scholar]
  24. L. Norton. Conceptual and practical implications of breast tissue geometry: toward a more effective, less toxic therapy. Oncologist, 10 (2005), No. 6, 370–381. [Google Scholar]
  25. L. Norton, J. Massague. Is cancer a disease of self-seeding? Nat Med, 12 (2006), No.8, 875–878 [Google Scholar]
  26. S. Masunaga, K. Ono, M. Abe. A method for the selective measurement of the radiosensitivity of quiescent cells in solid tumors – combination of immunofluorescence staining to BrdU and micronucleus assay. Radiat Res, 125 (1991), No. 3, 243–247. [Google Scholar]
  27. G.W. Barendsen, C. Van Bree, N.A.P. Franken. Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: implications for combined tumor treatments. Int. J. Oncol., 19 (2001), No. 2, 247–256. [Google Scholar]
  28. J.J. Kim, I.F. Tannock. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer, 5 (2005), No. 7, 516–25. [Google Scholar]
  29. H. Enderling, A.R.A. Anderson, M.A.J. Chaplain, A.J. Munro, J.S. Vaidya. Mathematical modelling of radiotherapy strategies for early breast cancer. J. Theor. Biol., 241 (2006), No. 1, 158–171. [Google Scholar]
  30. H. Enderling, M.A.J. Chaplain, A.R.A. Anderson, J.S. Vaidya. A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol., 246 (2007), No. 2, 245–259. [Google Scholar]
  31. B. Ribba, T. Colin, S. Schnell. A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3 (2006), No.7. [Google Scholar]
  32. A. Dawson, T. Hillen. Derivation of the Tumour Control Probability (TCP) from a Cell Cycle Model. Comp. Math. Meth. Med, 7 (2006), 121–142. [CrossRef] [Google Scholar]
  33. T.L. Jackson, H.M. Byrne. A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math Biosci,164 (2000), No. 1, 17–38. [Google Scholar]
  34. T. Alarcon, M.R. Owen, H.M. Byrne et al. Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comp Math Methods Med, 7(2006), 85–119. [Google Scholar]
  35. H.M. Byrne, T. Alarcon, M.R. Owen et al. Modelling the response of vascular tumours to chemotherapy: a multiscale approach. Math Mod Meth Appl Sci, 16 (2006), No. 1, 1219–1241. [Google Scholar]
  36. E.S. Norris, J.R. King, H.M. Byrne. Modelling the response of spatially structured tumours to chemotherapy: drug kinetics. Math Comp Mod, 43 (2006), No. 7-8, 820–837. [Google Scholar]
  37. A.R.A. Anderson, M.A.J. Chaplain, K.A. Rejniak. Single-Cell-Based Models in Biology and Medicine. Birkhauser, Basel, 2007. [Google Scholar]
  38. P.K. Maini, D.L.S. McElwain, D.I. Leavesley. Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng., 10 (2004), No.(3-4), 475–482. [Google Scholar]
  39. B. Ribba, K. Marron, Z. Agur, T. Alarcon, P.K. Maini. A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin's lymphoma: investigation of the current protocol through theoretical modelling results. Bull Math Biol, 67 (2005), No.1, 79–99. [Google Scholar]
  40. M. Guerrero, X. Allen Li. Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning. Phys Med Biol, 48 (2003), No.20, 3307–3326. [Google Scholar]
  41. D.J. Brenner, L.R. Hlatky, P.J. Hahnfeldt, E.J. Hall, R.K. Sachs. A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys, 32 (1995), No. 2, 379–390. [Google Scholar]
  42. J.A. Stanley, W.U. Shipley, G.G. Steele. Influence of tumour size on hypoxic fraction and therapeutic sensitivity of Lewis lung tumour. Br J Cancer, 26 (1977), No.1, 105–113. [Google Scholar]
  43. J. Folkman, M. Hochberg. Self-regulation of growth in three dimensions. J Exp Med 138 (1973) No. 4, 745–753. [Google Scholar]
  44. J.M. Brown, A.J. Giaccia. The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res, 58 (1998), 1408 –1416. [Google Scholar]
  45. S. Masunaga, K. Ono, A. Takahashi, T. Ohnishi, Y. Kinashi, M. Takagaki. Radiobiological characteristics of solid tumours depending on the p53 status of the tumour cells, with emphasis on the response of intratumour quiescent cells. Eur J Cancer, 38 (2002), No. 5, 718–727. [Google Scholar]
  46. P. Ubezio, D. Cameron. Cell killing and resistance in pre-operative breast cancer chemotherapy. BMC Cancer, 8 (2008). [Google Scholar]
  47. M. Baumann, M. Krause, R. Hill. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 8 (2008), No. 7, 545–554. [CrossRef] [PubMed] [Google Scholar]
  48. M. Baum, J.S. Vaidya. Targeted intra-operative radiotherapy–TARGIT for early breast cancer. Ann N Y Acad Sci, 1138 (2008), 132–135. [CrossRef] [PubMed] [Google Scholar]
  49. START Trialists' Group. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol, 9 (2008), No. 4, 331–341. [Google Scholar]
  50. J. Yarnold, D. Bloomeld, J. LeVay. Prospective randomized trial testing 5.7 Gy and 6.0 Gy fractions of whole breast radiotherapy in women with early breast cancer (FAST) trial. Clin Oncol, 16 (2004), S30. [Google Scholar]
  51. E.J. Hall. Radiobiology for the Radiologist 5th edn. Lippincott Williams & Wilkins, Philadelphia, 2000. [Google Scholar]
  52. S.K. Kang, J.B. Park, S.H. Cha. Multipotent, dedifferentiated cancer stem-like cells from brain gliomas. Stem Cells Dev, 15 (2006), No. 3, 423–435. [Google Scholar]
  53. S.A. Mani, W. Guo, M.J. Liao et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133 (2008), No. 4, 704–715. [Google Scholar]
  54. C. Guiot, P.G. Degiorgis, P.P. Delsanto et al. Does tumor growth follow a “universal law”? J Theor Biol, 225 (2003), No. 2, 147–151. [Google Scholar]
  55. A. Wichmann, B. Jaklevic, T.T. Su. Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci USA, 103 (2006), No. 26, 9952–9957. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.